1. Egya, D.O., Geiger, S., Corbett, P.W.M., March, R., Bisdom, K., Bertotti, G. and Bezerra, F.H., 2019. Analysing the limitations of the dual-porosity response during well tests in naturally fractured reservoirs.
Petroleum Geoscience,
25(1), pp.30-49. doi:
https://doi.org/10.1144/petgeo2017-053.
2. Moinfar, A., Narr, W., Hui, M.H., Mallison, B. and Lee, S.H., 2011, February. Comparison of discrete-fracture and dual-permeability models for multiphase flow in naturally fractured reservoirs.
In SPE Reservoir Simulation Conference, pp. SPE-142295. SPE. doi:
https://doi.org/10.2118/142295-MS .
3. Odling, N.E., Gillespie, P., Bourgine, B., Castaing, C., Chiles, J.P., Christensen, N.P., Fillion, E., Genter, A., Olsen, C., Thrane, L. and Trice, R., 1999. Variations in fracture system geometry and their implications for fluid flow in fractures hydrocarbon reservoirs.
Petroleum Geoscience,
5(4), pp.373-384. doi:
https://doi.org/10.1144/petgeo.5.4.373.
5. Bruna, P.O., Straubhaar, J., Prabhakaran, R., Bertotti, G., Bisdom, K., Mariethoz, G. and Meda, M., 2019. A new methodology to train fracture network simulation using multiple-point statistics.
Solid Earth,
10(2), pp.537-559. doi:
https:/doi.org/10.5194/se-10-537-2019.
6. Shah, S., Møyner, O., Tene, M., Lie, K.A. and Hajibeygi, H., 2016. The multiscale restriction smoothed basis method for fractured porous media (F-MsRSB).
Journal of Computational Physics,
318, pp.36-57. doi:
https://doi.org/10.1016/j.jcp.2016.05.001.
7. Bisdom, K., Gauthier, B.D.M., Bertotti, G. and Hardebol, N.J., 2014. Calibrating discrete fracture-network models with a carbonate three-dimensional outcrop fracture network: Implications for naturally fractured reservoir modeling.
AAPG bulletin,
98(7), pp.1351-1376. doi:
https://doi.org/10.1306/02031413060 .
8. Geiger, S., Dentz, M. and Neuweiler, I., 2013. A novel multirate dual-porosity model for improved simulation of fractured and multiporosity reservoirs.
SPE journal,
18(04), pp.670-684. doi:
https://doi.org/10.2118/148130-PA.
9. Bisdom, K., Bertotti, G. and Bezerra, F.H., 2017. Inter-well scale natural fracture geometry and permeability variations in low-deformation carbonate rocks.
Journal of Structural Geology,
97, pp.23-36. doi:
https://doi.org/10.1016/j.jsg.2017.02.011.
10. Sonka, M., Hlavac, V. and Boyle, R., 2013. Image processing, analysis and machine vision. Springer.
11. Vasuki, Y., Holden, E.J., Kovesi, P. and Micklethwaite, S., 2014. Semi-automatic mapping of geological Structures using UAV-based photogrammetric data: An image analysis approach.
Computers & Geosciences,
69, pp.22-32. doi:
https://doi.org/10.1016/j.cageo.2014.04.012.
12. Li, L. and Lee, S.H., 2008. Efficient field-scale simulation of black oil in a naturally fractured reservoir through discrete fracture networks and homogenized media.
SPE Reservoir evaluation & engineering,
11(04), pp.750-758. doi:
https://doi.org/10.2118/103901-PA.
13. Moinfar A., 2013. Development of an Efficient Embedded Discrete Fracture Model for 3D Compositional Reservoir Simulation in Fractured Reservoirs. Ph. D. Thesis., The University of Texas at Austin. URI:
http://hdl.handle.net/2152/21393
14. Moinfar, A., Varavei, A., Sepehrnoori, K. and Johns, R.T., 2014. Development of an efficient embedded discrete fracture model for 3D compositional reservoir simulation in fractured reservoirs.
SPE Journal,
19(02), pp.289-303. doi:
https://doi.org/10.2118/154246-PA.
15. Wang, C., Ran, Q. and Wu, Y.S., 2019. Robust implementations of the 3D-EDFM algorithm for reservoir simulation with complicated hydraulic fractures.
Journal of Petroleum Science and Engineering,
181, p.106229. doi:
https://doi.org/10.1016/j.petrol.2019.106229.
16. Zhang, H. and Sheng, J.J., 2021. An efficient embedded discrete fracture model based on the unstructured quadrangular grid.
Journal of Natural Gas Science and Engineering,
85, p.103710. doi:
https://doi.org/10.1016/j.jngse.2020.103710.
18. Olorode, O., Wang, B. and Rashid, H.U., 2020. Three-dimensional projection-based embedded discrete-fracture model for compositional simulation of fractured reservoirs.
SPE Journal,
25(04), pp.2143-2161. doi:
https://doi.org/10.2118/201243-PA.
20. Ren, G., Jiang, J. and Younis, R.M., 2018. A Model for coupled geomechanics and multiphase flow in fractured porous media using embedded meshes.
Advances in Water Resources,
122, pp.113-130. doi:
https://doi.org/10.1016/j.advwatres.2018.09.017.
21. Shakiba, M., de Araujo Cavalcante Filho, J.S. and Sepehrnoori, K., 2018. Using embedded discrete fracture model (EDFM) in numerical simulation of complex hydraulic fracture networks calibrated by microseismic monitoring data.
Journal of Natural Gas Science and Engineering,
55, pp.495-507. doi:
https://doi.org/10.1016/j.jngse.2018.04.019.
22. Jiang, Y., Killough, J.E. and Cui, Y., 2022. A Numerical Simulation Approach for Shale Fracture Network Characterization Using Hybrid EDFM Method.
Lithosphere, 2021(Special 1), p.4254028. doi:
https://doi.org/10.2113/2022/4254028.
23. Lin, Y., Jiang, M., Yao, Y., Zhang, L. and Lin, J., 2015. Use of UAV oblique imaging for the detection of individual trees in residential environments.
Urban forestry & urban greening,
14(2), pp.404-412. doi:
https://doi.org/10.1016/j.ufug.2015.03.003.
24. Bradski, G., 2000. The opencv library. Dr. Dobb's Journal: Software Tools for the Professional Programmer, 25(11), pp.120-123.
25. Van der Walt, S., Schönberger, J.L., Nunez-Iglesias, J., Boulogne, F., Warner, J.D., Yager, N., Gouillart, E. and Yu, T., 2014. scikit-image: image processing in Python.
PeerJ,
2, p.e453. doi:
https://doi.org/10.7717/peerj.453.
28. Muskat, M., 1938. The flow of homogeneous fluids through porous media. Soil Science, 46(2), p.169.
29. Lie, K.A., 2019. An introduction to reservoir simulation using MATLAB/GNU Octave: User guide for the MATLAB Reservoir Simulation Toolbox (MRST). Cambridge University Press.
30. Peaceman, D.W., 1978. Interpretation of well-block pressures in numerical reservoir simulation (includes associated paper 6988).
Society of Petroleum Engineers Journal,
18(03), pp.183-194. doi:
https://doi.org/10.2118/6893-PA.
31. Moinfar, A., Varavei, A., Sepehrnoori, K. and Johns, R.T., 2012, April. Development of a novel and computationally-efficient discrete-fracture model to study IOR processes in naturally fractured reservoirs.
In SPE Improved Oil Recovery Conference, (pp. SPE-154246). SPE. doi:
https://doi.org/10.2118/154246-MS.
32. Witherspoon, P.A., Wang, J.S., Iwai, K. and Gale, J.E., 1980. Validity of cubic law for fluid flow in a deformable rock fracture.
Water resources research,
16(6), pp.1016-1024. doi:
https://doi.org/10.1029/WR016i006p01016.