شبیه‌سازی یکپارچه‌ی جریان دو فاز در مخازن ترک‌دار طبیعی با روش ترک مجزای افزوده و پردازش تصاویر هوایی

نوع مقاله : پژوهشی

نویسندگان

دانشکده‌ی مهندسی مکانیک، دانشگاه صنعتی شریف، تهران، ایران.

چکیده

در نوشتار حاضر، یک فرآیند یکپارچه برای شبیه‌سازی جریان دو فاز در مخازن ترک‌دار طبیعی ارائه ‌شده است؛ که شامل دو بخش اصلی است: 1) تولید شبکه‌ی ترک‌ها از یک تصویر هوایی و اختصاص آن به سنگ مخزن، 2) شبیه‌سازی جریان در مخزن با کمک روش ترک مجزای افزوده. جزئیات پردازش تصویر و نحوه‌ی تشخیص هر ترک‌ تشریح و تأثیر پارامترهای مؤثر در کیفیت نتایج بررسی شده است. نتایج شبیه‌سازی با کمک یک مسئله‌ی نمونه، راستی‌آزمایی شده است. همچنین، تأثیر خواص فیزیکی سنگ و ترک‌ها در جریان گزارش شده است. نتایج نشان داده‌اند که در یک مخزن دو فازی حاوی آب و نفت، افزایش بازشدگی ترک‌ها از 15/0 به 21/0 میلی‌متر باعث کاهش 3 درصدی تولید نفت و افزایش نفوذپذیری سنگ از ۱ به ۲۰ میلی‌دارسی، باعث افزایش ۲۲ درصدی آن شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

An Integrated Approach for Simulation of Two-Phase Flows in Naturally Fractured Reservoirs Using Embedded Discrete Fracture Model and Aerial Image Processing

نویسندگان [English]

  • Ali Heshmati
  • Mehrdad Taghizadeh Manzari
Department of Mechanical Engineering of Sharif University of Technology, Tehran, Iran.
چکیده [English]

This paper introduces an integrated approach for simulating two-phase flows in naturally fractured reservoirs. The proposed computational process comprises two key steps: 1) generating a representation of the fracture network from aerial images using image processing techniques, 2) conducting two-phase flow simulations using the Embedded Discrete Fracture Method (EDFM). The reservoir contains only oil and water as immiscible incompressible fluids, with the assumption that the fracture system matches surface outcrop observations. Python libraries are utilized for image processing to convert aerial images into a fracture system defined by line segments. The effect of various tuning parameters, such as image resolution and edge detection, on the final fracture model is investigated. Once a robust fracture system representation is achieved, the reservoir geometry is defined, and boundary conditions are set. The problem is solved using the MATLAB Reservoir Simulation Toolbox (MRST), which includes an EDFM module for accurate analysis of naturally fractured reservoirs by incorporating detailed information, yielding precise fluid flow predictions. All types of fracture-matrix and fracture-fracture intersections and fluid exchanges between matrix and fractures are incorporated in the EDFM. Simulation results are verified against a benchmark problem, and the influence of rock and fracture physical properties on the flow field is examined. The study finds that rock permeability significantly affects fluid flow compared to fracture aperture or permeability. For instance, a 3 percent decrease in oil production is observed when increasing fracture aperture from 0.15 (mm) to 0.21 (mm), while increasing the matrix permeability from 1 to 20 millidarcy leads to a 22 percent increase. 

کلیدواژه‌ها [English]

  • Natural fractured reservoirs
  • embedded discrete fracture model (EDFM)
  • image processing
  • two-phase flow
  • aerial imaging
  • outcrop
1. Egya, D.O., Geiger, S., Corbett, P.W.M., March, R., Bisdom, K., Bertotti, G. and Bezerra, F.H., 2019. Analysing the limitations of the dual-porosity response during well tests in naturally fractured reservoirs. Petroleum Geoscience, 25(1), pp.30-49. doi: https://doi.org/10.1144/petgeo2017-053.
2. Moinfar, A., Narr, W., Hui, M.H., Mallison, B. and Lee, S.H., 2011, February. Comparison of discrete-fracture and dual-permeability models for multiphase flow in naturally fractured reservoirs. In SPE Reservoir Simulation Conference, pp. SPE-142295. SPE. doi: https://doi.org/10.2118/142295-MS .
3. Odling, N.E., Gillespie, P., Bourgine, B., Castaing, C., Chiles, J.P., Christensen, N.P., Fillion, E., Genter, A., Olsen, C., Thrane, L. and Trice, R., 1999. Variations in fracture system geometry and their implications for fluid flow in fractures hydrocarbon reservoirs. Petroleum Geoscience, 5(4), pp.373-384. doi: https://doi.org/10.1144/petgeo.5.4.373.
4. Bisdom, K., 2016. Burial-related fracturing in sub-horizontal and folded reservoirs: Geometry, geomechanics and impact on permeability. [Dissertation (TU Delft), Delft University of Technology].doi:https://doi.org/10.4233/uuid:f1b6f6e0-1542-4744-943e-04c7c551213b
5. Bruna, P.O., Straubhaar, J., Prabhakaran, R., Bertotti, G., Bisdom, K., Mariethoz, G. and Meda, M., 2019. A new methodology to train fracture network simulation using multiple-point statistics. Solid Earth, 10(2), pp.537-559. doi: https:/doi.org/10.5194/se-10-537-2019.
6. Shah, S., Møyner, O., Tene, M., Lie, K.A. and Hajibeygi, H., 2016. The multiscale restriction smoothed basis method for fractured porous media (F-MsRSB). Journal of Computational Physics, 318, pp.36-57. doi: https://doi.org/10.1016/j.jcp.2016.05.001.
7.  Bisdom, K., Gauthier, B.D.M., Bertotti, G. and Hardebol, N.J., 2014. Calibrating discrete fracture-network models with a carbonate three-dimensional outcrop fracture network: Implications for naturally fractured reservoir modeling. AAPG bulletin, 98(7), pp.1351-1376. doi: https://doi.org/10.1306/02031413060 .
8. Geiger, S., Dentz, M. and Neuweiler, I., 2013. A novel multirate dual-porosity model for improved simulation of fractured and multiporosity reservoirs. SPE journal, 18(04), pp.670-684. doi: https://doi.org/10.2118/148130-PA.
9. Bisdom, K., Bertotti, G. and Bezerra, F.H., 2017. Inter-well scale natural fracture geometry and permeability variations in low-deformation carbonate rocks. Journal of Structural Geology, 97, pp.23-36. doi: https://doi.org/10.1016/j.jsg.2017.02.011.
10. Sonka, M., Hlavac, V. and Boyle, R., 2013. Image processing, analysis and machine vision. Springer.
11. Vasuki, Y., Holden, E.J., Kovesi, P. and Micklethwaite, S., 2014. Semi-automatic mapping of geological Structures using UAV-based photogrammetric data: An image analysis approach. Computers & Geosciences, 69, pp.22-32. doi: https://doi.org/10.1016/j.cageo.2014.04.012.
12. Li, L. and Lee, S.H., 2008. Efficient field-scale simulation of black oil in a naturally fractured reservoir through discrete fracture networks and homogenized media. SPE Reservoir evaluation & engineering, 11(04), pp.750-758. doi: https://doi.org/10.2118/103901-PA.
13. Moinfar A., 2013. Development of an Efficient Embedded Discrete Fracture Model for 3D Compositional Reservoir Simulation in Fractured Reservoirs. Ph. D. Thesis., The University of Texas at Austin. URI: http://hdl.handle.net/2152/21393
14. Moinfar, A., Varavei, A., Sepehrnoori, K. and Johns, R.T., 2014. Development of an efficient embedded discrete fracture model for 3D compositional reservoir simulation in fractured reservoirs. SPE Journal, 19(02), pp.289-303. doi: https://doi.org/10.2118/154246-PA.
15. Wang, C., Ran, Q. and Wu, Y.S., 2019. Robust implementations of the 3D-EDFM algorithm for reservoir simulation with complicated hydraulic fractures. Journal of Petroleum Science and Engineering, 181, p.106229. doi: https://doi.org/10.1016/j.petrol.2019.106229.
16. Zhang, H. and Sheng, J.J., 2021. An efficient embedded discrete fracture model based on the unstructured quadrangular grid. Journal of Natural Gas Science and Engineering, 85, p.103710. doi: https://doi.org/10.1016/j.jngse.2020.103710.
17. Ţene, M., Bosma, S.B., Al Kobaisi, M.S. and Hajibeygi, H., 2017. Projection-based embedded discrete fracture model (pEDFM). Advances in Water Resources, 105, pp.205-216. doi: https://doi.org/10.1016/j.advwatres.2017.05.009.
18. Olorode, O., Wang, B. and Rashid, H.U., 2020. Three-dimensional projection-based embedded discrete-fracture model for compositional simulation of fractured reservoirs. SPE Journal, 25(04), pp.2143-2161. doi: https://doi.org/10.2118/201243-PA.
19. Olorode, O. and Rashid, H., 2022. Analytical modification of EDFM for transient flow in tight rocks. Scientific Reports, 12(1), p.22018. doi: https://doi.org/10.1038/s41598-022-26536-w.
20. Ren, G., Jiang, J. and Younis, R.M., 2018. A Model for coupled geomechanics and multiphase flow in fractured porous media using embedded meshes. Advances in Water Resources, 122, pp.113-130. doi: https://doi.org/10.1016/j.advwatres.2018.09.017.
21. Shakiba, M., de Araujo Cavalcante Filho, J.S. and Sepehrnoori, K., 2018. Using embedded discrete fracture model (EDFM) in numerical simulation of complex hydraulic fracture networks calibrated by microseismic monitoring data. Journal of Natural Gas Science and Engineering, 55, pp.495-507. doi: https://doi.org/10.1016/j.jngse.2018.04.019.
22. Jiang, Y., Killough, J.E. and Cui, Y., 2022. A Numerical Simulation Approach for Shale Fracture Network Characterization Using Hybrid EDFM Method. Lithosphere, 2021(Special 1), p.4254028. doi: https://doi.org/10.2113/2022/4254028.
23. Lin, Y., Jiang, M., Yao, Y., Zhang, L. and Lin, J., 2015. Use of UAV oblique imaging for the detection of individual trees in residential environments. Urban forestry & urban greening, 14(2), pp.404-412. doi: https://doi.org/10.1016/j.ufug.2015.03.003.
24. Bradski, G., 2000. The opencv library. Dr. Dobb's Journal: Software Tools for the Professional Programmer, 25(11), pp.120-123.
25. Van der Walt, S., Schönberger, J.L., Nunez-Iglesias, J., Boulogne, F., Warner, J.D., Yager, N., Gouillart, E. and Yu, T., 2014. scikit-image: image processing in Python. PeerJ, 2, p.e453. doi: https://doi.org/10.7717/peerj.453.
26. Telea, A., 2004. An image inpainting technique based on the fast marching method. Journal of graphics tools, 9(1), pp.23-34. doi: https://doi.org/10.1080/10867651.2004.10487596.
27. Canny, J.F., 1983. Finding edges and lines in images. URI: http://hdl.handle.net/1721.1/6939.
28. Muskat, M., 1938. The flow of homogeneous fluids through porous media. Soil Science, 46(2), p.169.
29. Lie, K.A., 2019. An introduction to reservoir simulation using MATLAB/GNU Octave: User guide for the MATLAB Reservoir Simulation Toolbox (MRST). Cambridge University Press.
30. Peaceman, D.W., 1978. Interpretation of well-block pressures in numerical reservoir simulation (includes associated paper 6988). Society of Petroleum Engineers Journal, 18(03), pp.183-194. doi: https://doi.org/10.2118/6893-PA.
31. Moinfar, A., Varavei, A., Sepehrnoori, K. and Johns, R.T., 2012, April. Development of a novel and computationally-efficient discrete-fracture model to study IOR processes in naturally fractured reservoirs. In SPE Improved Oil Recovery Conference, (pp. SPE-154246). SPE. doi: https://doi.org/10.2118/154246-MS.
32. Witherspoon, P.A., Wang, J.S., Iwai, K. and Gale, J.E., 1980. Validity of cubic law for fluid flow in a deformable rock fracture. Water resources research, 16(6), pp.1016-1024. doi: https://doi.org/10.1029/WR016i006p01016.