بررسی اثر خاکستر لجن خلیج گرگان در پارامترهای مکانیکی خاک لس گرگان در درصد رطوبت‌های متفاوت و انرژی تراکم یکسان

نوع مقاله : یادداشت فنی

نویسندگان

1 گروه مهندسی عمران، واحد اراک، دانشگاه آزاد اسلامی، اراک، ایران

2 گروه مهندسی عمران، دانشگاه گنبدکاووس، گنبدکاووس، ایران

چکیده

هدف از مطالعه‌ی حاضر، بررسی خواص مکانیکی خاک لس تثبیت­شده با لجن سوزانده­شده‌ی خلیج گرگان در دمای بهینه‌ی 1000 درجه‌ی سانتی­گراد (SPA) است. برای رسیدن به این هدف، ابتدا SPA به ترتیب 0، 2، 4، 6، 8 و 10 درصد وزن خشک خاک لس جایگزین شده است. نمونه­های مطالعه‌شده با انرژی یکسان (معادل آزمون پروکتور استاندارد) در درصد رطوبت­های مختلف تهیه و بعد از 56 روز عمل­آوری در دستگاه­های مقاومت فشاری محصور­نشده، برش مستقیم، و تحکیم بررسی شدند. نتایج به‌دست‌آمده نشان داد که افزودن SPA سبب بهبود مقاومت فشاری محصور­نشده و مقاومت برشی (چسبندگی و زاویه‌ی اصطکاک داخلی) خاک لس شده است، که این بهبود در 10٪ جایگزینی خاک با SPA، بیشترین مقدار بوده است. همچنین با افزودن SPA، شاخص­های فشردگی و بازفشردگی خاک تثبیت­شده به‌صورت قابل‌ملاحظه‌ای نسبت به خاک پایه کاهش یافته است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the Effect of Gorgan Bay’s Sludge Ash on the Mechanical Parameters of Gorgan Loess Soil at Different Moisture Content and the Same Compaction Energy

نویسندگان [English]

  • Vahid Pesarakloo 1
  • Seyed Hamid LAJEVARDI 1
  • Hossein MolaAbasi 2
  • Seyed Mohammad MIrHosseini 1
1 Department of Civil Engineering, Arak Branch, Islamic Azad University, Arak, Iran
2 Department of Civil Engineering, Gonbad Kavous University, Gonbad Kavous, Iran
چکیده [English]

The objective of this study is to examine the mechanical properties of Gorgan loess enhanced with sludge pond ash (SPA) from Gorgan Gulf under different conditions. To achieve this, different proportions of SPA were mixed with the loess to obtain accurate findings on the efficacy of SPA addition on the unconfined compressive strength (UCS), cohesion (C), friction angle (f), compression (Cc), and recompression (Cs) index of the loess. Firstly, the sludge from a pond burned at 1000°C, which was the optimal temperature determined by X-ray fluorescence analysis (XRF), was added to the mixture as 0, 2, 4, 6, 8, and 10% of the soil's dry weight, respectively. The studied samples were prepared with the same energy (equivalent to the standard Proctor test) at different moisture contents (16, 18.5, 21, 23.5, and 26%) and were tested in unconfined compressive strength, direct shear, and consolidation devices at 56 days of curing in a humid room with a temperature of 24°C. It was found that adding SPA to the base soil increases the maximum strength measured in unconfined compressive strength, which is defined as unconfined compressive strength (UCS). On the other hand, it decreased with increasing moisture content. The addition of SPA as an additive material to the loess mixture was found to exert a significant effect on the shear strength properties (C and f) of the loess. The changes in moisture percentage for this test were not specific due to soil saturation and consolidation, and did not have a great effect on the increase of shear strength parameters with the increase of SPA. Examining the graphs of the consolidation test shows that the addition of 2% of SPA to the loess caused a noticeable decrease in the amount of Cc of the sample under the test after processing. Increasing the amount of SPA up to 10% caused a further decrease in the Cc value of the samples. This trend is also noticeable for the re-compression index, which showed a greater intensity with the increase in the amount of SPA. Accordingly, adding SPA to the soil caused a sharp decrease in Cs in the samples compared to the base soil. At the end, the results of macro-scale analyses collectively confirm the superior efficacy of the SPA replacement in enhancing various strength and stiffness properties of the loess.

کلیدواژه‌ها [English]

  • Loess stabilization
  • Gorgan Gulf’s sludge ash
  • unconfined compressive strength
  • shear strength
  • consolidation properties
1. Kalantari, B., 2013. Foundations on collapsible soils: a review. Proceedings of the Institution of Civil Engineers-Forensic Engineering, 166(2), pp. 57-63. https://doi.org/10.1680/feng.12.00016
2. Haeri, S. M., Akbari Garakani, A., Roohparvar, H. R., Desai, C. S., Seyed Ghafouri, S. M. H., and Salemi Kouchesfahani, K., 2019. Testing and constitutive modeling of lime-stabilized collapsible loess. I: experimental investigations. International journal of geomechanics, 19(4), pp. 04019006. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001364
3. Angelova, R.N., 2007. Loess-cement long-term strength-a facilitating factor for loess improvement applications. Geologica Balcanica, 36(3-4), pp.21-24. https://doi.org/10.52321/GeolBalc.36.3-4.21
4. Zhang, C.L., Jiang, G.L., Su, L.J. and Zhou, G.D., 2017. Effect of cement on the stabilization of loess. Journal of Mountain Science, 14(11), pp.2325-2336. https://doi.org/10.1007/s11629-017-4365-4
5. Vakili, A.H., Selamat, M.R. and Moayedi, H., 2013. Effects of using pozzolan and portland cement in the treatment of dispersive clay. The Scientific World Journal. https://doi.org/10.1155/2013/547615
6. Kajaste, R., Hurme, M., 2016. Cement industry greenhouse gas emissions management options and abatement cost. Journal of Cleaner Production, Volume 112, Part 5, pp 4041-4052. https://doi.org/10.1016/j.jclepro.2015.07.055
7. Ke, J., McNeil, M., Price, L., Khanna, N.Z. and Zhou, N., 2013. Estimation of CO2 emissions from China's cement production: methodologies and uncertainties. Energy Policy 57: pp.172–181.https://doi.org/10.1016/j.enpol.2013.01.028
8. Amato, I., 2013. Green cement: Concrete solutions. 494 (7437): pp.300–301. https://doi.org/10.1038/494300a
9.  Alijani Shirvani, R. and Noorzad, R., 2019. Effectiveness of sludge ash of wood and paper mill as nontraditional additive for clayey soil treatment. Journal of Materials in Civil Engineering, 31(10), 04019230. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002877
10. Kumar, A. and Gupta, D., 2016. Behavior of cement-stabilized fiber-reinforced pond ash, rice husk ash–soil mixtures. Geotextiles and Geomembranes, 44(3), 466-474. https://doi.org/10.1016/j.geotexmem.2015.07.010
11. Gupta, D. and Kumar, A., 2017. Performance evaluation of cement-stabilized pond ash-rice husk ash-clay mixture as a highway construction material. Journal of Rock Mechanics and Geotechnical Engineering, 9(1), pp.159-169. https://doi.org/10.1016/j.jrmge.2016.05.010
12. Arora, S. and Kumar, A., 2019. Bearing capacity of square footing resting on fibre-reinforced pond ash overlying soft clay. International Journal of Geosynthetics and Ground Engineering, 5, pp.1-11. https://doi.org/10.1007/s40891-019-0155-0
13. Gupta, D., Kumar, A., Kumar, V., Priyadarshee, A. and Sharma, V., 2019. Performance of pond ash and rice husk ash in clay: a comparative study. In Recycled Waste Materials: Proceedings of EGRWSE 2018, pp.145-153. Springer Singapore. https://doi.org/10.1007/978-981-13-7017-5_17
14. Gupta, G., Sood, H. and Gupta, P., 2020. Performance evaluation of pavement geomaterials stabilized with pond ash and brick kiln dust using advanced cyclic triaxial testing. Materials, 13(3), p.553. https://doi.org/10.3390/ma13030553
15. Mogili, S., Mudavath, H. and Gonavaram, K.K., 2021. Effect of Stabilization on Geomechanical Properties of Pond Ash for Pavement Subbase Application. In Transportation, Water and Environmental Geotechnics: Proceedings of Indian Geotechnical Conference 2020 Volume 4, pp.177-187. Springer Singapore. https://doi.org/10.1007/978-981-16-2260-1_17
16. Pesarakloo, V., Lajevardi, S.H., MolaAbasi, H. and Mirhosseini, S.M., 2024. Potential application of sludge pond ash as a novel additive for clay stabilization. Physics and Chemistry of the Earth, Parts A/B/C, 133, p.103534. https://doi.org/10.1016/j.pce.2023.103534
17. ASTM D422., 2007. Standard test method for particle-size analysis of soils. https://doi.org/10.1520/D0422-63R07
18. ASTM D4318-10., 2005. Standard test methods for liquid limit, plastic limit, and plasticity index of soils. https://doi.org/10.1520/D4318-10
19. ASTM D2487-17., 2017. Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). https://doi.org/10.1520/D2487-17
20. ASTM D698-12., 2012. Standard test methods for laboratory compaction characteristics of soil using standard effort (12,400 ft-lbf/ft3 (600 kN-m/m3)). https://doi.org/10.1520/D0698-12
21. ASTM D2166-06., 2006, Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. https://doi.org/10.1520/D2166-06
22. ASTM D3080-04., 2004. Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions. https://doi.org/10.1520/D3080-04
23. ASTM D2435., 2004. Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading. https://doi.org/10.1520/D2435-04
24. Seng, S. and Tanaka, H., 2012. Properties of very soft clays: A study of thixotropic hardening and behavior under low consolidation pressure. Soils and Foundations, 52(2), pp.335-345. http://doi.org/10.1016/j.sandf.2012.02.010
25. Khajeh, A., Chenari, R.J., Payan, M. and MolaAbasi, H., 2023. Assessing the effect of lime-zeolite on geotechnical properties and microstructure of reconstituted clay used as a subgrade soil.Physics and Chemistry of the Earth, Parts a/b/c, 132, p.103501. https://doi.org/10.1016/j.pce.2023.103501
26. Babu, J.S., Thimothy, R.S.W., Shantharam, Y., Arun, M. and Sivakumar, T., 2023. Enhancing the compaction properties of frictional-cohesive soil by adding the industrial ash products. In AIP Conference Proceedings (Vol. 2782, No. 1). AIP Publishing. https://doi.org/10.1063/5.0155191