بررسی تأثیر آلودگی ناشی از گازوئیل در رفتار خاک مارن (مطالعه‌ی موردی شهر قم)

نوع مقاله : یادداشت فنی

نویسندگان

گروه مهندسی عمران، دانشکده‌ی فنی و مهندسی، دانشگاه قم، قم، ایران.

10.24200/j30.2025.65025.3361

چکیده

در مطالعه‌ی حاضر، تأثیر میزان و مدت آلودگی ناشی از گازوئیل در پارامترهای مقاومتی و تحکیمی خاک مارن قم با استفاده از آزمایش‌های تک­محوری و تحکیم و همچنین با استفاده از تصاویر میکروسکوپ الکترونی بررسی شده است. نتایج نشان داده که مقاومت فشاری محصورنشده‌ی نمونه­‌ی مارن با افزایش آلودگی تا 3٪ وزنی، حدود 68٪ افزایش و سپس کاهش می یاید. این در حالی است که افزایش زمان آلودگی همواره موجب کاهش مقاومت فشاری نمونه­های آلوده می­شود. از سوی دیگر، مشخص شده  که آلودگی منجر به افزایش شاخص­ فشردگی و تورم در خاک مارن می‌شود و ضریب تحکیم نیز از یک روند کاهشی ضمن افزایش میزان آلاینده تبعیت می­کند. همچنین، نتایج تصاویر میکروسکوپ الکترونی حاکی از کاهش حفره‌ها و افزایش پیوستگی نمونه­ی آنی نسبت به نمونه­ی 7 روزه‌ی آلوده به گازوئیل است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the Effect of Diesel Pollution on Marl Parameters-A Case Study in Qom City

نویسندگان [English]

  • Morteza Namati
  • Majid Yazdandoust
  • Mahdi khodaparast
Faculty of Civil Engineering, Faculty of Engineering, University of Qom, Qom, Iran.
چکیده [English]

Considering population growth, industrialization, and pollutant sources, soil contamination by hydrocarbons is one of the most significant risks to humans. Besides its adverse environmental effects, soil pollution also alters the geotechnical properties of soils. Soils around refineries, fuel stations, and oil and gas pipelines, especially in oil-rich countries like Iran, are constantly exposed to contamination due to the extensive transportation of hydrocarbons. Given the prevalence of marl soil in Iran, particularly in Qom city, studying the properties of contaminated soil is crucial for various engineering purposes. Despite various methods for bioremediation of contaminated soil, these methods have limitations. Therefore, a detailed study of the geotechnical behavior of hydrocarbon-contaminated soil and its potential use for civil and economic projects is essential. In this study, we investigated the impact of diesel pollution on the strength and consolidation parameters of Qom’s marl soil using uniaxial and consolidation tests, along with electron microscope images. For this purpose, marl soil samples were prepared with 0%, 3%, 6%, and 9% diesel contamination by weight and tested at different time intervals (0, 7, 14, and 28 days). The results of the uniaxial compressive strength test indicate that the marl sample increases by approximately 68% with 3% pollutant content, but with further pollutant increase, the compressive strength decreases. The effect of time also manifests as a reduction in strength for contaminated samples. On the other hand, consolidation test results show that pollution leads to an increase in the compression index and swelling in marl soil. The coefficient of consolidation also follows a decreasing trend with increasing pollutant content. Additionally, electron microscope images reveal reduced porosity and increased cohesion in the contaminated sample compared to the 7-day diesel-polluted sample. Moreover, a linear relationship with a correlation coefficient of 0.73 was obtained between the compressive strength and the secant modules.

کلیدواژه‌ها [English]

  • Marl soil
  • gas oil contamination
  • shear strength
  • consolidation
  • electron microscopy
1. Gao, H., Wu, M., Liu, H., Xu, Y. and Liu, Z., 2022. Effect of petroleum hydrocarbon pollution levels on the soil microecosystem and ecological function. Environmental Pollution, 293, pp.118511. doi.org/10.1016/j.envpol.2021.118511.
2. Abousnina, R.M., Manalo, A., Shiau, J. and Lokuge, W., 2015. Effects of light crude oil contamination on the physical and mechanical properties of fine sand. Soil and Sediment Contamination: An International Journal, 24(8), pp.833-845. doi.org/10.1080/15320383.2015.1058338.
3. Mallah, M.A., Changxing, L., Mallah, M.A., Noreen, S., Liu, Y., Saeed, M., Xi, H., Ahmed, B., Feng, F., Mirjat, A.A. and Wang, W., 2022. Polycyclic aromatic hydrocarbon and its effects on human health: An overeview. Chemosphere, 296, pp.133948. doi.org/10.1016/j.chemosphere.2022.133948.
4. Sarmadi, M.S., Zohrevand, P. and Rezaee, M., 2019. Effect of kerosene contamination on the physical and mechanical properties of sandy soil. Innovative Infrastructure Solutions, 4, pp.1-9. doi.org/10.1007/s41062-019-0196-1.
5. Mustafa, Y.M., Al-Amoudi, O.S.B., Ahmad, S. and Maslehuddin, M., 2018. Geotechnical properties of plastic marl contaminated with diesel. Arabian Journal for Science and Engineering, 43, pp.5573-5583. doi.org/10.1007/s13369-018-3224-0.
6. Kererat, C., 2019. Effect of oil-contamination and water saturation on the bearing capacity and shear strength parameters of silty sandy soil. Engineering Geology, 257, pp.105138. doi.org/10.1016/j.enggeo.2019.05.015.
7. Hernández-Mendoza, C.E., García Ramírez, P. and Chávez Alegría, O., 2021. Geotechnical evaluation of diesel contaminated clayey soil. Applied Sciences, 11(14), pp.6451. doi.org/10.3390/app11146451.
8. Elsaigh, W.A.H. and Oluremi, J.R., 2022. Assessment of geotechnical properties of oil contaminated subgrade soil. Soil and Sediment Contamination: An International Journal, 31(5), pp.586-610. doi.org/10.1080/15320383.2021.1985079.
9. Al-Aghbari, M., Dutta, R. and Mohamedzeini, Y., 2011. Effect of diesel and gasoline on the properties of sands—a comparative study. International Journal of Geotechnical Engineering, 5(1), pp.61-68. doi.org/10.3328/IJGE.2011.05.01.61-68.
10. Shahidi, M., Asemi, F. and Farrokhi, F., 2022. Influence of gas oil contamination on geotechnical properties of clayey sand. Journal of Civil and Environmental Engineering, 52(106), pp.217-226. [In persian]. doi.org/10.22034/JCEE.2020.11226.
11. Nasehi, S.A., Uromeihy, A., Nikudel, M.R. and Morsali, A., 2016. Influence of gas oil contamination on geotechnical properties of fine and coarse-grained soils. Geotechnical and Geological Engineering, 34, pp.333-345. doi.org/10.1007/s10706-015-9948-7.
12. Yazdi, A. and Sharifi Teshnizi, E., 2021. Effects of contamination with gasoline on engineering properties of fine-grained silty soils with an emphasis on the duration of exposure. SN Applied Sciences, 3(7), pp.704. doi.org/10.1007/s42452-021-04637-x.
13. Hamidi, A. and Jedari, S., 2013. Investigating the consolidation behavior of contaminated clay. Sharif Civil Engineering, 29(2), pp.29-35 [In persian].
14. Ghasemzadeh, H. and Tabaiyan, M., 2017. The effect of diesel fuel pollution on the efficiency of soil stabilization method. Geotechnical and Geological Engineering, 35, pp.475-484. doi.org/10.1007/s10706-016-0121-8.
15. Ahmadi, M., Ebadi, T. and Maknoon, R., 2021. Effects of crude oil contamination on geotechnical properties of sand-kaolinite mixtures. Engineering geology, 283, pp.106021. doi.org/10.1016/j.enggeo.2021.106021.
16. Aghajani, S., 2016. Crude oil spill effect on geotechnical properties of the tabriz refinery's soil. Master thesis, Tabriz University, Faculty of Civil Engineering. [In persian].
17. Sadeqiani, M. and Jiriaei Sharahi, M., 2004. Laboratory investigation of crude oil-contamination effects on parameters of resistance, settlement, and sand compressibility. The First National Civil Engineering Congress. [In persian].
18. Rajabi, A. M., Khodaparast, M., & Shukri, M., 2017. Studying the effect of oil and gas contamination on the shear behavior of coarse-grained soils. Iranian Engineering Geological Association Journal, 9(3 & 4), pp.85-96. [In persian].
19. ASTM D422-63, 2007. Standard test method for particle-size analysis of soils. Annual book of ASTM standards, 4. doi.org/10.1520/D0422-63R07.
20. ASTM D2216-10, 2010. Standard test methods for laboratory determination of water (moisture) content of soil and rock by mass. In Am. Soc. Test. Mater. doi.org/10.1520/D2216-10.
21. ASTM D4318, 2010. Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM International West Conshohocken. doi.org/10.1520/D4318-17E01.
22. ASTM D1556-07, 2007. Standard test method for density and unit weight of soil in place by the sand-cone method. ASTM International West Conshohocken, PA. doi.org/10.1520/D1556-07.
23. ASTM D1557, 2012. Standard test methods for laboratory compaction characteristics of soil using modified effort (56000 ft-lbf/ft3 (2700 kn-m/m3). ASTM international. doi.org/10.1520/D1557-12R21.
24. ASTM D854-14, 2010. Standard test methods for specific gravity of soil solids by water pycnometer. D854, 717. doi.org/10.1520/D0854-23.
25. ASTM D2166-06, 2000. Standard test method for unconfined compressive strength of cohesive soil. ASTM International West Conshohocken, PA, USA. doi.org/10.1520/D2166-06.
26. ASTM D2435-04, 2011. Standard test methods for one-dimensional consolidation properties of soils using incremental loading. ASTM International. doi.org/10.1520/D2435-04.
27. Khamehchiyan, M., Charkhabi, A.H. and Tajik, M., 2007. Effects of crude oil contamination on geotechnical properties of clayey and sandy soils. Engineering geology, 89(3-4), pp.220-229. doi.org/10.1016/j.enggeo.2006.10.009.
28. Liu, Z.B., Liu, S.Y. and Cai, Y., 2015. Engineering property test of kaolin clay contaminated by diesel oil. Journal of Central South University, 22(12), pp.4837-4843. doi.org/10.1007/s11771-015-3035-3.
29. Amiri, M., Kalantari, B. and Basereh, F., 2022. Microstructural evaluation of the effect of diesel organic pollutant on geotechnical and geo-environmental properties of marl soil in southern Iran. Arabian Journal of Geosciences, 15(13), pp.1212. doi.org/10.1007/s12517-022-10472-0.
30. Fazeli, G., Lotfollahi, S., Bakhtiari, P. and Farrokhi, F., 2021. Bearing capacity and geotechnical properties of sandy soil substrate contaminated with oil derivatives (diesel fuel and kerosene). Quarterly Journal of Engineering Geology and Hydrogeology, 54(4), pp. qjegh2020-134. doi.org/10.1144/qjegh2020-134.
31. Al-Sanad, H.A., Eid, W.K. and Ismael, N.F., 1995. Geotechnical properties of oil-contaminated kuwaiti sand. Journal of geotechnical engineering, 121(5), pp.407-412. doi.org/10.1061/(ASCE)0733-9410(1995)121:5(407).
32. Karthigeyan, S. and Ramachandran, A., 2020. Physical and engineering properties of oil contaminated clay soil. International Journal of Engineering Research & Technology (IJERT), 9(5), pp.763-666. doi.org/10.17577/IJERTV9IS050590.
33. Ota, J.O., 2013. The effect of light crude oil contamination on the geotechnical properties of kaolinite clay soil. PhD thesis, Anglia Ruskin University.
34. Salimnezhad, A., Soltani-Jigheh, H. and Soorki, A.A., 2021. Effects of oil contamination and bioremediation on geotechnical properties of highly plastic clayey soil. Journal of Rock Mechanics and Geotechnical Engineering, 13(3), pp.653-670. doi.org/10.1016/j.jrmge.2020.11.011.
35. AbdelSalam, S.S. and Hasan, A.M., 2023. Controlled diesel-mixed soils for roadway embankments: laboratory and ultrasonic characterization. Arabian Journal of Geosciences, 16(5), pp.313. doi.org/10.1007/s12517-023-11397-y.
36. Brzeziński, B. and Olchawa, A., 2023. Effects of contamination with gasoline and diesel oil on shear strength of coarse grained soil. Rocznik Ochrona Środowiska, 25, pp.222-227. doi.org/10.54740/ros.2023.022.
37. Ghadrdan, M., Sabour, M.R., Ghasemzadeh, H. and Khosravi, E., 2014. Effects of gasoil contamination on geotechnical properties of kaolinite soils. Environmental Sciences, 11(4), pp.9-20.
38. George, S., Aswathy, E., Sabu, B., Krishnaprabha, N.P. and George, M., 2015. Study on geotechnical properties of diesel oil contaminated soil. International Journal of Civil and Structural Engineering Research, 2(2), pp.113-117. doi.org/10.13140/RG.2.2.17938.58564.
39. Khosravi, E., Ghasemzadeh, H., Sabour, M.R. and Yazdani, H., 2013. Geotechnical properties of gas oil-contaminated kaolinite. Engineering Geology, 166, pp.11-16. doi.org/10.1016/j.enggeo.2013.08.004.