ارزیابی آزمایشگاهی ظرفیت گنبدهای بتنی حاوی الیاف فولادی تحت اثر بار ضربه‌

نوع مقاله : یادداشت فنی

نویسندگان

1 گروه مهندسی عمران، واحد سمنان، دانشگاه آزاد اسلامی، سمنان، ایران

2 گروه مهندسی مکانیک، واحد سمنان، دانشگاه آزاد اسلامی، سمنان، ایران.

10.24200/j30.2024.64611.3334

چکیده

در نوشتار حاضر، با هدف بررسی و مقایسه‌ی پارامترهای افزایش درصد فولاد و افزایش ضخامت گنبدها در مقاومت ضربه‌ای آن‌ها تحت اثر ضربه‌ی وزنه‌ی افتان، خصوصیات مکانیکی و ضربه‌ای گنبدهای بتنی با الیاف فولادی بررسی شده است. همچنین، درصد الیاف‌های 0، 5/0، 1، و 5/1، در گنبدهای با ضخامت 50، 75، و100 میلی‌متر بررسی شده است. بیشتر پژوهش‌های صورت‌گرفته تاکنون بر روی دال‌های بتنی بوده و با توجه به اهمیت گنبدها به‌دلیل پوشش فضاهای وسیع، این مهم به‌‌صورت آزمایشگاهی و عددی بررسی شده است. نتایج آزمایشگاهی و عددی نشان داده‌اند که الیاف فولادی می‌توانند مقاومت گنبدها را در برابر ضربه افزایش دهند. همچنین اثر افزودن الیاف فولادی و ضخامت گنبدها نشان داده است که با افزایش الیاف فولادی و ضخامت گنبدها، به‌طور قابل‌توجهی جذب انرژی افزایش می‌یابد، که در گنبد با الیاف 5/1% و ضخامت 100 میلی‌متر مشاهده شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Experimental Evaluation of the Capacity of Concrete Domes Containing Steel Fibers Under Impact Load

نویسندگان [English]

  • Reza Geravand 1
  • Alireza Mortezaei 1
  • Ahmad Azizi 2
1 Department of Civil Engineering, Semnan branch, Islamic Azad University, Semnan, Iran.
2 Department of Mechanical Engineering, Semnan branch, Islamic Azad University, Semnan, Iran
چکیده [English]

The arch is a fundamental and aesthetic component of Iranian architecture, integral to the stability and beauty of buildings since ancient times. Modern domes often cover large spaces without internal supports, with their shape playing a vital role in handling gravitational and lateral loads. Domes can also be subjected to shock loads from events like earthquakes, impacting their structural integrity. This study explores the mechanical and impact properties of concrete domes reinforced with steel fibers. While most previous research has focused on the impact effects on concrete slabs, this study shifts the focus to concrete domes. It examines how different percentages of steel fibers (0, 0.5, 1, and 1.5) and varying dome thicknesses (50, 75, and 100 mm) affect impact resistance. Steel fibers enhance the compressive strength, crack control, and overall durability of concrete. The research involved compressive, tensile, and bending strength tests, as well as an impact test using a 10 kg steel weight dropped from a height of 3260 mm. Abaqus software was employed to compare numerical simulations with laboratory results, using models from Popovich for compression and Shima for tensile behavior. The impact test assessed three key parameters: the number of impacts to create the first effective crack, the number of impacts until dome failure, and the energy absorbed by the dome. Findings revealed that steel fibers significantly improve the impact resistance and energy absorption of concrete domes. A 100 mm thick dome with 0.5% steel fibers absorbed 33% more energy than a 50 mm dome without fibers. When the fiber content was increased to 1% and 1.5%, energy absorption rose by 60% and 78%, respectively. Similarly, increasing the dome thickness to 75 mm with 0.5% fibers resulted in a 67% increase in energy absorption compared to the control sample without fibers. For domes with 1% and 1.5% fibers, energy absorption increased by 80% and 82%, respectively. The study concluded that both the addition of steel fibers and increased dome thickness substantially enhance the impact resistance of concrete domes. The most significant improvements were observed in domes with a 100 mm thickness, where the number of impacts required to cause damage increased by 68% and 64% compared to 50 mm and 75 mm thick domes with 1.5% fiber content. This highlights the crucial role of both fiber reinforcement and thickness in improving dome resilience against impacts. 

کلیدواژه‌ها [English]

  • Dome
  • impact
  • failure
  • energy absorption
  • steel fiber
1. Mehdinezhad, J., Sharghi, A. and Asadpour, F. 2021. Integration of architectural form and structure in the formation of physical structure of historical buildings using Iranian arches. Journal of Architectural Thought, 5.10, pp.89-108 [In Persian]. https://doi.org/10.30479/at.2020.11225.1280
2. Khosrowjerdi, S. and Sarkardeh, H. 2021. Effect of arch height on wind load in shape dome structure. Amirkabir Journal of Civil Engineering, 53.2, pp.627-638 [In Persian].
https://doi.org/10.22060/ceej.2020.16424.6220
3. Pirnia, M.K. 2005. Iranian architectural stylistics, 4th Edn., pp.50-200, Soroush Danesh, Tehran.
4. Liew, K.M., Peng, L.X., and Ng, T.Y. 2011.Three-dimensional vibration analysis of spherical  shell panels subjected to different boundaryconditios,Concrete structures.
5. Hejazi, M. and Zarei, Sh. (2003). Parametric investigation of concrete domes. Proceedings of the 6th International Conference on Civil Engineering, sfahan, Iran. [In Persian].
6. Ferreira, L.M., Muñoz-Reja, M. and Reis, P.N.B. 2024. Impact response of semicylindrical woven composite shells: The effect of stacking sequence. International Journal of Impact Engineering, 189, pp.104952.
https://doi.org/10.1016/j.ijimpeng.2024.104952
7. Mastali, M., Dalvand, A. and Sattarifard, A. 2017. The impact resistance and mechanical properties of the reinforced self-compacting concrete incorporating recycled CFRP fiber with different lengths and dosages. Composites Part B: Engineering, 112, pp.74-92. https://doi.org/10.1016/j.compositesb.2016.12.029.
8. Song, P.S., Hwang, S. and Sheu, B.C. 2005. Strength properties of nylon- and polypropylene-fiber-reinforced concretes. Cement and Concrete Research, 35.8, pp.1546-1550. https://doi.org/10.1016/j.cemconres.2004.06.033.
9. Mastali, M., Naghibdehi, M.G., Naghipour, M. and Rabiee, S.M. 2015. Experimental assessment of functionally graded reinforced concrete (FGRC) slabs under drop weight and projectile impacts. Construction and Building Materials, 95, pp.296-311. https://doi.org/10.1016/j.conbuildmat.2015.07.151.
10. Sahraei-Moghaddam, A. H., Omedia-Nasab, F.and Dalvand, A. (2019). Investigation of mechanical and impact properties of high-performance self- compacting composite concrete. Ferdowsi Civil Engineering Journal, 32(3), 4966. [In Persian]. https://doi.org/10.22067/civil.v32i3.79476
11. Ebrahimian, A. and Mortezaei, A. 2021. The effect of specimen size on compressive, tensile and flexural strength of steel fiber reinforced concrete. Journal of Concrete Structures and Materials, 6.2, pp.80-103 [In Persian].
https://doi.org/10.30478/jcsm.2021.276570.1199
12. Dayyani, M., Mortezaei, A., Rouhanimanesh, M.S. and Marnani, J.A. 2022. Experimental study on the effect of fibers on engineered cementitious composite short square columns. Periodica Polytechnica Civil Engineering, 66.3, pp.798-808. https://doi.org/10.3311/PPci.19612
13. Golestan, A. and Hajiani Boushehrian, A. 2017. Investigation the application of the steel fiber in special steel fiber concrete and its effect on concrete permeability and compression strength parameters. Concrete Research, 9.2, pp.111-121 [In Persian].
14. Song, P.S. and Hwang, S. 2004. Mechanical properties of high-strength steel fiber-reinforced concrete. Construction and Building Materials, 18.9, pp.669-673. https://doi.org/10.1016/j.conbuildmat.2004.04.027
15. Zhang, P., Wang, C., Gao, Z. and Wang, F. 2023. A review on fracture properties of steel fiber reinforced concrete. Journal of Building Engineering, 67, pp.105975. https://doi.org/10.1016/j.jobe.2023.105975
16. ASTM C150. 2012. Standard specification for Portland cement. ASTM International, West Conshohocken, PA, USA.
17. ASTM C33. 2003. Standard specification for concrete aggregates. American Society for Testing and Materials, Philadelphia, PA, USA.
18. Babaei, A., Mortezaei, A. and Salehian, H. 2021. Experimental study on seismic performance of steel fiber reinforced concrete wall piers. Structural Concrete, 22.3, pp.1363-1377. https://doi.org/10.1002/suco.202000104
19. Hrynyk, T.D. and Vecchio, F.J. 2017. Modeling of reinforced and fiber-reinforced concrete slabs under impact loads. ACI Structural Journal, 321, pp.8-1.
20. Arazbzade, A. and Mozaffar Jazi, M. 2016. Comparative study on effects of area and position of opening on behavior and shear capacity of concrete shear walls. Concrete Research, 8.2, pp.125-135.
21. Faris, M.A., Abdullah, M.M.A.B., Muniandy, R., Abu Hashim, M.F., Błoch, K., Jeż, B. and Ghazali, M.F. 2021. Comparison of hook and straight steel fibers addition on Malaysian fly ash-based geopolymer concrete on the slump, density, water absorption and mechanical properties. Materials, 14.5, pp.1310. https://doi.org/10.3390/ma14051310