3. Hein, C.J., Fallon, A.R., Rosen, P., Hoagland, P., Georgiou, I.Y., FitzGerald, D.M., Morris, M., Baker, S., Marino, G.B. and Fitzsimons, G., 2019. Shoreline dynamics along a developed river mouth barrier island: Multi-decadal cycles of erosion and event-driven mitigation.
Frontiers in Earth Science,
7, p.103.
https://doi.org/10.3389/feart.2019.00103
4. Maleki, S., Adjami, M. and Ahmadi, A., 2024. Numerical Modeling of Swash Zone Morphological Processes in Coarse-Grained Beaches with Xbeach Open-Source Model.
Sharif Journal of Civil Engineering (SJCE),
40(3), pp.117-137.
https://doi.org/10.24200/j30.2024.63280.366
5. Hayes, M.O. and FitzGerald, D.M., 2013. Origin, evolution, and classification of tidal inlets.
Journal of Coastal Research,
69, pp.14-33.
https://doi.org/10.2112/SI_69_3
8. Georgiou, I.Y., FitzGerald, D.M. and Hanegan, K.C., 2024. Storm and tidal interactions control sediment exchange in mixed-energy coastal systems.
PNAS Nexus,
3(2), p.pgae042.
org/10.1093/pnasnexus/pgae042
10. Karunarathna, H., Reeve, D. and Spivack, M., 2008. Long-term morphodynamic evolution of estuaries: an inverse problem.
Estuarine, Coastal and Shelf Science,
77(3), pp.385-395.
https://doi.org/10.1016/j.ecss.2007.09.029
11. Wang, Z.B., Van Maren, D.S., Ding, P.X., Yang, S.L., Van Prooijen, B.C., De Vet, P.L.M., Winterwerp, J.C., De Vriend, H.J., Stive, M.J.F., and He, Q., 2015. Human impacts on morphodynamic thresholds in estuarine systems.
Continental Shelf Research,
111, pp.174-183.
https://doi.org/10.1016/j.csr.2015.08.009
12. Dam, G., Van der Wegen, M., Labeur, R.J., and Roelvink, D., 2016. Modeling centuries of estuarine morphodynamics in the Western Scheldt estuary.
Geophysical Research Letters,
43(8), pp.3839-3847.
https://doi.org/10.1002/2015GL066725
13. Luan HuaLong, L.H., Ding PingXing, D.P., Wang ZhengBing, W.Z., and Ge JianZhong, G.J., 2017. Process-based morphodynamic modeling of the Yangtze Estuary at a decadal timescale: controls on estuarine evolution and future trends.
Geomorphology.
https://doi.org/10.1016/j.geomorph.2017.04.016
14. Xie, D., Gao, S., Wang, Z.B., Pan, C., Wu, X., and Wang, Q., 2017. Morphodynamic modeling of a large inside sandbar and its dextral morphology in a convergent estuary: Qiantang Estuary, China.
Journal of Geophysical Research: Earth Surface,
122(8), pp.1553-1572.
https://doi.org/10.1002/2017JF004293
15. Yuan, B., Sun, J., Lin, B. and Zhang, F., 2020. Long-term morphodynamics of a large estuary subject to decreasing sediment supply and SLR.
Global and Planetary Change,
191, p.103.
org/10.1016/j.gloplacha.2020.103212
16. Wang, Z.B., Hoekstra, P., Burchard, H., Ridderinkhof, H., De Swart, H.E. and Stive, M.J.F., 2012. Morphodynamics of the Wadden Sea and its barrier island system.
Ocean & Coastal Management,
68, pp.39
https://doi.org/10.1016/j.ocecoaman.2011.12.022
18. Fagherazzi, S., Edmonds, D.A., Nardin, W., Leonardi, N., Canestrelli, A., Falcini, F., Jerolmack, D.J., Mariotti, G., Rowland, J.C. and Slingerland, R.L., 2015. Dynamics of river mouth deposits.
Reviews of Geophysics,
53(3), pp.642-672.
https://doi.org/10.1002/2014RG000451
20. Zhang, X.D., 2020. A matrix algebra approach to artificial intelligence. [book]
21. Benz, U.C., Hofmann, P., Willhauck, G., Lingenfelder, I. and Heynen, M, 2004. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information.
ISPRS Journal of Photogrammetry and Remote Sensing,
58(3-4), pp.239-258.
https://doi.org/10.1016/j.isprsjprs.2003.10.02
23. Aiazzi, B., Alparone, L., Baronti, S. and Garzelli, A., 2002. Context-driven fusion of high spatial and spectral resolution images based on oversampled multiresolution analysis.
IEEE Transactions on Geoscience and Remote Sensing,
40(10), pp.2300-2312.
https://doi.org/10.1109/TGRS.2002.803623
26. Park, D.H., Kim, H.K., Choi, I.Y. and Kim, J.K., 2012. A literature review and classification of recommender systems research.
Expert Systems with Applications,
39(11), pp.10059-10072.
https://doi.org/10.1016/j.eswa.2012.02.038
27. Peponi, A., Morgado, P. and Trindade, J., 2019. Combining artificial neural networks and GIS fundamentals for coastal erosion prediction modeling.
Sustainability,
11(4), p.975.
https://doi.org/10.3390/su11040975
28. Abouhalima, M., das Neves, L., Taveira-Pinto, F. and Rosa-Santos, P., 2024. Machine Learning in Coastal Engineering: Applications, Challenges, and Perspectives.
Journal of Marine Science and Engineering,
12(4), p.638.
https://doi.org/10.3390/jmse12040638
30. Kumar, L., Afzal, M.S. and Afzal, M.M., 2020. Mapping shoreline change using machine learning: a case study from the eastern Indian coast.
Acta Geophysica,
68(4), pp.1127-1143.
https://doi.org/10.1007/s11600-020-00454-9
31. van Maanen, B., Coco, G., Bryan, K.R. and Ruessink, B.G., 2010. The use of artificial neural networks to analyze and predict alongshore sediment transport. Nonlinear Processes in Geophysics,
17(5), pp.395-404.
https://doi.org/10.5194
32. Kabiri-Samani, A.R., Aghaee-Tarazjani, J., Borghei, S.M. and Jeng, D.S., 2011. Application of neural networks and fuzzy logic models to long-shore sediment transport.
Applied Soft Computing,
11(2), pp.2880-2887.
https://doi.org/10.1016/j.asoc.2010.11.021
34. Wang, Y., Chen, J., Cai, H., Yu, Q. and Zhou, Z., 2021. Predicting water turbidity in a macro-tidal coastal bay using machine learning approaches.
Estuarine, Coastal and Shelf Science,
252, p.107276.
https://doi.org/10.1016/j.ecss.2021.107276
35. Salcedo, F., Harter, C. and Fenical, S., 2019, September. Predicting Long-Term Coastal Conditions in San Francisco Bay and Other Estuaries with the Use of Supervised Neural Networks. In
15th Triennial International Conference (pp. 101-111). Reston, VA: American Society of Civil Engineers.
https://ascelibrary.org/doi/abs/10.1061/9780784482629.010
37. Múnera, S., Osorio, A.F. and Velásquez, J.D., 2014. Data-based methods and algorithms for the analysis of sandbar behavior with exogenous variables.
Computers & geosciences,
72, pp.134-146.
https://doi.org/10.1016/j.cageo.2014.07.009
38. Fannassi, Y., Ennouali, Z., Hakkou, M., Benmohammadi, A., Al-Mutiry, M., Elbisy, M.S. and Masria, A., 2023. Prediction of coastal vulnerability with machine learning techniques, Mediterranean coast of Tangier-Tetouan, Morocco.
Estuarine, Coastal and Shelf Science,
291, p.108422.
https://doi.org/10.1016/j.ecss.2023.108422
41. Misra, A., Vojinovic, Z., Ramakrishnan, B., Luijendijk, A. and Ranasinghe, R., 2018. Shallow water bathymetry mapping using Support Vector Machine (SVM) technique and multispectral imagery.
International Journal of Remote Sensing,
39(13), pp.4431-4450.
https://doi.org/10.1080/01431161.2017.1421796
44. Iran Ports and Maritime Organization, 2013. Monitoring and simulation studies of the coasts of Hormozgan province, report on sedimentation studies. [in Persian].
45. Iran Ports and Maritime Organization, 2016. ICZM inspection plan of the coasts of Hormozgan province, sedimentary reports.
46. Ghanavati, E., Shah-Hosseini, M. and Marriner, N., 2021. Analysis of the Makoran coastline of Iran’s vulnerability to global sea-level rise.
Journal of Marine Science and Engineering,
9(8), p.891. Available at:
https://doi.org/10.3390/jmse9080891
47. Dadashzadeh, Z., Shayan, S., et al., 2019. Analysis of coastal morphodynamics with the aim of determining the boundary of sediment cells (case study: Hormozgan province).
Quantitative Geomorphology Research,
9(2), pp.20.
https://doi.org/10.22113/jmst.2018.126521.2144
48. Zakeri, E., Jabari, A., Adjami, M. and Rezaei, A., 2019. Effects of environmental parameters on the morphology of the beach cu sps of Roddic Port.
Sharif Journal of Civil Engineering (SJCE),
35(2), pp.35-50.
https://doi.org/10.24200/j30.2018.2261.2152