\شماره٪٪۱
Al-Khanbashi, A. and El-Gamal, M., 2003. Modification of sandy soil using
water-borne polymer.
{\it Journal of Applied Polymer Science}, {\it 88}(10), pp.2484-2491.
https://doi.org/10.1002/app.12066.
\شماره٪٪۲
Michalowski, R.L. and \v{C}erma\'{a}k, J.,
2003. Triaxial compression of sand reinforced with fibers. {\it Journal of
Geotechnical and Geoenvironmental Engineering}, {\it 129}(2), pp.125-136.
https://doi.org/10.1061/(ASCE)1090-0241(2003)129:2(125).
\شماره٪٪۳
Anagnostopoulos, C.A., 2005. Laboratory study of an injected granular soil
with polymer grouts. {\it Tunnelling and Underground Space Technology},
{\it 20}(6),
pp.525-533. https://doi.org/10.1016/j.tust.2005.04.005.
\شماره٪٪۴
Chauhan, M.S., Mittal, S. and Mohanty, B., 2008. Performance evaluation of
silty sand subgrade reinforced with fly ash and fibre. {\it Geotextiles and
Geomembranes},
{\it 26}(5), pp.429-435. https://doi.org/10.1016/j.geotexmem.2008.02.001.
\شماره٪٪۵
Shahnazari, H.A.B.I.B., Ghiassian, H., Noorzad, A., Shafiee, A.,
Tabarsa, A.R. and Jamshidi,
R., 2009. Shear modulus of silty sand reinforced by
carpet waste strips.
{\it Journal of Seismology and Earthquake Engineering}, {\it 11}(3),
pp.133-142.
\شماره٪٪۶
Consoli, N.C., Vendruscolo, M.A., Fonini, A. and Rosa, F.D., 2009. Fiber
reinforcement effects on sand considering a wide cementation range.
{\it Geotextiles
and Geomembranes}, {\it 27}(3), pp.196-203.
https://doi.org/10.1016/j.geotexmem.2008.11.005.
\شماره٪٪۷
Park, S.S., 2009. Effect of fiber reinforcement and distribution on
unconfined compressive strength of fiber-reinforced cemented sand.
{\it Geotextiles
and Geomembranes}, {\it 27}(2), pp.162-166.
https://doi.org/10.1016/j.geotexmem.2008.09.001.
\شماره٪٪۸
Naeini, S.A. and Mahdavi, A., 2009. Effect of polymer on shear strength of
silty sand. {\it EJGE}, {\it 14}, pp.1-11.
\شماره٪٪۹
Naeini, S.A. and Ghorbanali, M., 2010. Effect of Wet and Dry Conditions on
Strength of Silty Sand Soils Stabilized with Epoxy Resin Polymer.
{\it Journal of
Applied Sciences}, {\it 10}(22), pp.2839-2846.
https://doi.org/10.3923/jas.2010.2839.2846.
\شماره٪٪۱۰
Sadek, S., Najjar, S.S. and Freiha, F., 2010. Shear strength of
fiber-reinforced sands. {\it Journal of Geotechnical and Geoenvironmental
Engineering}, {\it 136}(3), pp.490-499.
https://doi.org/10.1061/(ASCE)GT.1943-5606.0000235.
\شماره٪٪۱۱
Anagnostopoulos, C., Papaliangas, T., Manolopoulou, S. and Dimopoulos, T.,
2011. Physical and mechanical properties of chemically grouted sand.
{\it Tunnelling
and Underground Space Technology}, {\it 26}(6), pp.718-724.
https://doi.org/10.1016/j.tust.2011.05.006.
\شماره٪٪۱۲
Anagnostopoulos, C.A. and Papaliangas, T.T., 2012. Experimental
investigation of epoxy resin and sand mixes. {\it Journal of Geotechnical and
Geoenvironmental Engineering}, {\it 138}(7), pp.841-849.
https://doi.org/10.1061/(asce)gt.1943-5606.0000648.
\شماره٪٪۱۳
Liu, J., Feng, Q., Wang, Y., Bai, Y., Wei, J. and Song, Z., 2017. The
effect of polymer-fiber stabilization on the unconfined compressive strength
and shear strength of sand. {\it
Advances in Materials Science and Engineering},
pp.1-9. https://doi.org/10.1155/2017/2370763.
\شماره٪٪۱۴
Liu, J., Bai, Y., Song, Z., Lu, Y., Qian, W. and Kanungo, D., 2018.
Evaluation of strength properties of sand modified with organic
polymers.
{\it Polymers}, {\it 10}(3), 287. https://doi.org/10.3390/polym10030287.
\شماره٪٪۱۵
Baghini, M.S., Ismail, A., Asghar, M.P., Fendereski, G. and Sadeghi, M.,
2018. Measuring the effects of styrene butadiene copolymer latex-Portland
cement additives on properties of stabilized soil-aggregate base.
{\it International
Journal of Pavement Research and Technology}, {\it 11}(5), pp.458-469.
https://doi.org/10.1016/j.ijprt.2017.12.001.
\شماره٪٪۱۶
Ehrlich, M., Almeida, M. and Curcio, D., 2019. Hydro-mechanical behavior of
a lateritic fiber-soil composite as a waste containment liner.
{\it Geotextiles and
Geomembranes}, {\it 47}(1), pp.42-47.
https://doi.org/10.1016/j.geotexmem.2018.09.005.
\شماره٪٪۱۷
Roshan, K., Choobbasti, A.J. and Kutanaei, S.S., 2020. Evaluation of the
impact of fiber reinforcement on the durability of lignosulfonate stabilized
clayey sand under wet-dry condition.
{\it Transportation Geotechnics}, {\it 23}, 100359.
https://doi.org/10.1016/j.trgeo.2020.100359.
\شماره٪٪۱۸
Taher, Z.J., Scalia IV, J. and Bareither, C.A., 2020. Comparative
assessment of expansive soil stabilization by commercially available polymers.
{\it Transportation Geotechnics}, {\it 24}, 100387.
https://doi.org/10.1016/j.trgeo.2020.100387.
\شماره٪٪۱۹
Valipour, M., Shourijeh, P.T. and Mohammadinia, A., 2021. Application of
recycled tire polymer fibers and glass fibers for clay reinforcement.
{\it Transportation Geotechnics}, {\it 27}, 100474.
https://doi.org/10.1016/j.trgeo.2020.100474.
\شماره٪٪۲۰
Molvi Najoomi., 2012. Studying the mechanical behavior of clay modified
with cement and tire thread fibers. Master's Thesis, Boali Sina University,
Hamadan. [In Persian].
\شماره٪٪۲۱
Mirzaei, F. and Ezni Ashari, M., 2010. Investigating the effect of tire
thread fibers on the behavior of reinforced shear stress and shear strength of
sandy soil. Master's Thesis, Bo Ali Sina University, Hamedan. [In Persian].
\شماره٪٪۲۲
Tareh Dehghani, A. and Ezna Ashri, M., 2013. Investigation of stress-strain
behavior and dynamic properties of soil reinforced with tire thread fibers,
Master's Thesis, Bo Ali Sina University, Hamadan. [In Persian].
\شماره٪٪۲۳
Isfahan Paya Resin Company., 1993. Technical reports of the company's
laboratory. Isfahan, Iran, https://payaresin.com
\شماره٪٪۲۴
Introducing Saba Tire Cord Company., 1996. Zanjan, Iran.
http://www.riidco.com.
\شماره٪٪۲۵
ASTM D6980., 2017. Standard test method for determination of moisture in
plastics by loss in weight. (n.d.). https://www.astm.org/d6980-17.html.
\شماره٪٪۲۶
ASTM D4767-11. 2020. Standard test method for consolidated undrained
triaxial compression test for cohesive soils. (n.d.).
https://www.astm.org/d4767-11r20.html.