بررسی مشخصات مکانیکی بلند مدت (3 ساله) بتن حاوی سنگ دانه ی بازیافتی و پوزولان‌های زئولیت و میکروسیلیس

نوع مقاله : یادداشت فنی

نویسندگان

دانشکده‌ی مهندسی عمران، پردیس دانشکده‌های فنی، دانشگاه تهران، تهران، ایران

چکیده

از مسائل مطرح در زمینه‌ی استفاده از سنگ‌دانه‌ی بازیافتی و پوزولان‌های جایگزین سیمان، عملکرد بلندمدت آن‌هاست. به‌منظور بررسی مسئله‌ی کنونی، با استفاده از یک نوع درشت‏دانه‌ی بازیافتی و دو نوع پوزولان (میکروسیلیس و زئولیت)، در مجموع 12 طرح اختلاط طراحی و ساخته شد. بررسی نتایج عملکرد مکانیکی نشان داد که تا سن 28 روز، استفاده از میکروسیلیس و زئولیت باعث بهبود مقاومت‏های فشاری و کششی به ترتیب 11-17 و 2-33 درصد شد، اما در بلندمدت اثر پوزولان‏های مصرفی کاهش یافت و به 2-10 و 5-8 درصد رسید. همچنین داده‏های درصد جذب آب و عمق نفوذ آب نشان داد که استفاده از میکروسیلیس تأثیر بیشتری برای بهبود خواص دوامی بتن حاوی سنگ‌دانه‌ی بازیافتی نسبت به زئولیت دارد، اما خواص دوامی همچنان ضعیف‌تر از نمونه‌ی بدون سنگ‌دانه‌ی بازیافتی است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

ASSESSING LONG-TERM (3-YEAR) MECHANICAL PROPERTIES OF RECYCLED AGGREGATE CONCRETE CONTAINING ZEOLITE AND SILICA FUME

نویسندگان [English]

  • M. Aghili Lotf
  • A. M. Ramezanianpour
  • M. Y. Chamani
Ph.D. Candidate, Faculty of Civil Engineering, College of Engineering, University of Tehran, Tehran, Iran,
چکیده [English]

Using recycled concrete aggregate as a sustainable solution has been the subject of much research in recent years. The use of recycled aggregate has led to a reduction in the quality of concrete, according to various studies. A promising approach to enhance the concrete properties of recycled aggregate concrete involves the use of pozzolans as supplementary cementitious materials. In this study, cement was replaced by silica fume in 8% of the specimens, while in other specimens, cement was replaced by zeolite in 15%. Natural aggregate was substituted with recycled concrete aggregate in varying proportions of 30%, 50%, and 100%. Subsequently, various mechanical and durability tests were conducted to evaluate the properties of each specimen. Compressive and tensile tests were carried out to assess the mechanical properties of the specimens. The tests revealed that specimens containing recycled aggregate exhibited inferior properties compared to natural aggregate concrete. Over the long term (3 years), the specimens containing recycled aggregate also displayed lower compressive strength. Specimens containing silica fume demonstrated higher compressive strength in the short term when used with natural aggregate concrete but showed similar performance over the 3-year period. In specimens containing recycled aggregate, silica fume had a more pronounced effect, leading to higher compressive strength in the short term but similar or reduced strength over the 3-year period. A similar trend to that observed in compressive strength was found in splitting tensile strength. As the percentage of recycled aggregate replacement increased, tensile strength decreased. The use of silica fume increased splitting tensile strength, even over the 3-year period. On the other hand, using zeolite did not result in a significant change, and specimens exhibited similar or reduced compressive strength over the 3-year period. In general, it can be inferred that the use of supplementary cementitious materials can enhance mechanical properties in the short term. However, durability tests, including water penetration depth and water absorption percentage, demonstrated almost the opposite trend. This suggests that the use of supplementary cementitious materials generally has a negative impact on concrete properties in the long term.

کلیدواژه‌ها [English]

  • recycled concrete aggregate
  • zeolite
  • silica fume
  • recycled aggregate concrete
  • long-term properties
1. Tu, T.Y., Chen, Y.Y. and Hwang, C.L., 2006 May. Properties of HPC with recycled aggregates. Cem Concr Res, 36(5) pp.943–50. DOI: 10.1016/j.cemconres.2005.11.022. 2. Benhelal, E., Zahedi, G., Shamsaei, E. and Bahadori, A., 2013 Jul. Global strategies and potentials to curb CO2 emissions in cement industry. J Clean Prod, 51 pp.142–61. DOI: 10.1016/j.jclepro.2012.10.049. 3. Bai, G., Zhu, C., Liu, C. and Liu, B., 2020. An evaluation of the recycled aggregate characteristics and the recycled aggregate concrete mechanical properties. 240, Construction and Building Materials. Elsevier Ltd; ;DOI: 10.1016/j.conbuildmat.2019.117978 4. Aghili Lotf, M., Ramezanianpour, A.M. and Palasi, M. 2020. Investigation the effect of different types of recycled concrete aggregates on the engineering properties of concrete. Journal of Structural and Construction Engineering, 7(3) pp.179–92. DOI: 10.22065/jsce.2018.127001.1519. [In Persian]. 5. Aghili Lotf, M., Palassi, M. and Ramezanianpour, A.M., 2018. Evaluation of the Freeze and Thaw Resistance of Recycled Concrete Aggregates and Natural Aggregates; Journal of Transportation Infrastructure Engineering, 3(4) pp.65–76. DOI: 10.22075/jtie.2018.13497.1270. [In Persian]. 6. Aghili Lotf, M., Ramezanianpour, A.M. and Palassi, M., 2020. Evaluating the deicer salt scaling resistance of recycled aggregate concrete. Sharif Journal of Civil Engineering, 35.2(4.2) pp.21–31. DOI: 10.24200/j30.2018.5042.2194. [In Persian]. 7. Palassi, M., Aghili Lotf, M. and Ramezanianpour, A.M., 2018. Evaluating the utilization of recycled concrete aggregate in road applications. Journal of Transportation Research, [Internet]. URL:https://www.trijournal.ir/article_63096.html. [In Persian]. 8. Aghili Lotf, M., Ramezanianpour, A.M. and Habibi, A., 2018. Utilization of recycled concrete powder as cement replacement or filler in masonry mortar. Concrete Research,11(4) pp.133–43. DOI: 10.22124/jcr.2018.10197.1285. [In Persian]. 9. Aghili Lotf, M., Ramezanianpour, A.M., 2018 Sep 1. Investigation on the correlations between different physical and mechanical properties of concrete made with recycled concrete aggregate. Mdrsjrns, [Internet]. 18(3) pp.153–67. URL:http://mcej.modares.ac.ir/article-16-25738-en.html [In Persian] 10.1400. آیین نامه ی بتن ایران، ویرایش دوم 11. Aghililotf, M., Kuroshkarim, M., Chamani, M.Y., Ramezanianpour, A.M., 2023. A study on properties of masonry mortar containing recycled fine aggregate. Concrete Research. DOI: 10.22124/jcr.2023.21865.1565. [In Persian]. 12. Sajedi, S.F. and Jalilifar, H., 2019. Evaluating and comparing the effect of zeolite, micro-silica, and fly ash on the mechanical properties of recycled concrete made of 100% recycled aggregates. Journal of Structural and Construction Engineering, 6(Special Issue 4) pp.165–80. DOI: 10.22065/jsce.2018.117501.1448. [In Persian]. 13. Shorbi Niazi, H. and Khalilzadeh Vahidi, E., 2022. Investigation of properties of concrete containing recycled aggregates and waste rubber with micro silica. Amirkabir Journal of Civil Engineering, 54(3) pp.1151–64. DOI:10.22060/ceej.2021.19279.7123. [In Persian]. 14. Aghili lotf, M., Ramezanianpour, A.M., Masoud Palasi, 1396. Evaluation of mechanical properties and durability of recycled aggregate and its use in concrete mixtures. Master’s Thesis In Civil-Road And Transportation Engineering [Master’s Thesis]; University Of Tehran. [In Persian]. 15. Djerbi Tegguer, A., 2012 Feb. Determining the water absorption of recycled aggregates utilizing hydrostatic weighing approach, Constr Build Mater, 27(1) pp.112–6. DOI: 10.1016/j.conbuildmat.2011.08.018. 16. Hewlett, P. and Liska, M., 2019. Lea’s Chemistry of Cement and Concrete. 5th Ed. Elsevier. 17. McNeil, K. and Kang, T.H.K., 2013. Recycled concrete aggregates: a review. International Journal of Concrete Structures and Materials. Korea Concrete Institute, Vol. 7, pp. 61–9. DOI: 10.1007/s40069-013-0032-5. 18. Thomas, J., Thaickavil, N.N. and Wilson, P.M., 2018 Sep 1. Strength and durability of concrete containing recycled concrete aggregates. Journal of Building Engineering, 19 pp.349–65. DOI: 10.1016/j.jobe.2018.05.007. 19. Aghililotf, M., Palassi, M., Ramezanianpour, A.M., 2021 Oct 15. Mechanical and durability assessment of unconfined recycled concrete aggregates and natural aggregates used in road constructions. International Journal of Pavement Engineering, 22(12) pp.1518–30. DOI: 10.1080/10298436.2019.1701190. 20. Lotf, M.A., Ramezanianpour, A.M. and Palassi, M., 2018 Jun. Evaluating the frost resistance of recycled concrete aggregate by various standards. Journal of Materials in Civil Engineering, 30(6) p.04018117. DOI: 10.1061/(ASCE)MT.1943-5533.0002254. 21. Katz, A., 2004 Dec. Treatments for the improvement of recycled aggregate. Journal of Materials in Civil Engineering, 16(6) pp.597–603. DOI: 10.1061/(ASCE)0899-1561(2004)16:6(597). 22. Dimitriou, G., Savva, P., Petrou, M.F., 2018 Jan 15. Enhancing mechanical and durability properties of recycled aggregate concrete. Constr Build Mater, 158 pp.228–35. DOI: 10.1016/j.conbuildmat.2017.09.137. 23. Mehta, P.K., 1986. Concrete. Structure, Properties And Materials; Englewood Cliffs: Prentice-Hall. 24. Dilbas, H., Şimşek, M. and Çakir, Ö., 2014 Jun 30. An investigation on mechanical and physical properties of recycled aggregate concrete (RAC) with and without silica fume. Constr Build Mater, 61 pp.50–9. DOI: 10.1016/j.conbuildmat.2014.02.057. 25. Kou, S.C., Poon, C.S. and Agrela, F. 2011 Sep. Comparisons of natural and recycled aggregate concretes prepared with the addition of different mineral admixtures. Cem Concr Compos, 33(8) pp.788–95.DOI:10.1016/j.cemconcomp.2011.05.009. 26. Jalilifar, H. and Sajedi, F., 2021 Jan 18. Micro-structural analysis of recycled concretes made with recycled coarse concrete aggregates. Constr Build Mater,267.DOI: 10.1016/j.conbuildmat.2020.121041. 27. Tam, V.W.Y., Tam, C.M., 2008 Oct. Diversifying two-stage mixing approach (TSMA) for recycled aggregate concrete: TSMAs and TSMAsc. Constr Build Mater, 22(10), pp.2068–77. DOI: 10.1016/j.conbuildmat.2007.07.024. 28. Kou, S. and Poon, C.S., 2006 Dec. Compressive strength, pore size distribution and chloride-ion penetration of recycled aggregate concrete incorporating class-F fly ash. Journal of Wuhan University of Technology-Mater Sci Ed, 21(4) pp.130–6. DOI: 10.1007/BF02841223. 29. Corinaldesi, V. and Moriconi, G., 2009 Aug; Influence of mineral additions on the performance of 100% recycled aggregate concrete. Constr Build Mater; 23(8) pp.2869–76. DOI: 10.1016/j.conbuildmat.2009.02.004. 30. Tangchirapat, W., Buranasing, R., Jaturapitakkul, C. and Chindaprasirt, P., 2008 Aug. Influence of rice husk–bark ash on mechanical properties of concrete containing high amount of recycled aggregates. Constr Build Mater, 22(8) pp.1812–9. DOI: 10.1016/j.conbuildmat.2007.05.004. 31. De Brito, J., Agrela, F. and Silva, R.V., 2018. Legal regulations of recycled aggregate concrete in buildings and roads [Internet], New Trends in Eco-efficient and Recycled Concrete. Elsevier Ltd. pp. 509–526.DOI:10.1016/B978-0-08-102480-5.00018X. 32. ASTM C 192., 2002. Standard practice for making and curing concrete test specimens in the laboratory. ASTM International. 33. ASTM C 131–03., 2006. Standard Test Method For Resistance To Degradation Of Smallsize Coarse Aggregate By Abrasion And Impact In The Los Angeles Machine. Annual Book of ASTM Standards. 34. EN BS 12390-3., 2009. Testing hardened concrete: compressive strength of test specimens. British Standard Institution. 35. ASTM C 496. 2004. Standard test method for splitting tensile strength of cylindrical concrete specimens. ASTM International. 36. ASTM C 642. 2006. Standard Test Method For Density, Absorption, And Voids In Hardened Concrete. Annual book of ASTM standards. 37. DIN 1048. 1991. Testing of hardened concrete DIN , German Institute for StandardizationTesting concrete.