1. Virkutyte, J., Sillanpää, M. and Latostenmaa, P., 2002. Electrokinetic soil remediation—critical overview. Science of the total environment, 289(1-3), pp.97-121. doi.org/10.1016/S00489697(01)01027-0.
2. Panagos, P., Van Liedekerke, M., Yigini, Y. and Montanarella, L., 2013. Contaminated sites in Europe: review of the current situation based on data collected through a European network. Journal of environmental and public health, 2013(1), p.158764. doi.org/10.1155/2013/158764.
3. Rosestolato, D., Bagatin, R. and Ferro, S., 2015. Electrokinetic remediation of soils polluted by heavy metals (mercury in particular). Chemical Engineering Journal, 264,pp.16-23. doi.org/10.1016/j.cej.2014.11.074.
4. Ugwu, I.M. and Igbokwe, O.A., 2019. Sorption of heavy metals on clay minerals and oxides: a review. Advanced sorption process applications, 2019 pp.1-23.doi.org/ 10.5772/intechopen.80989
5. Wen, D., Fu, R. and Li, Q., 2021. Removal of inorganic contaminants in soil by electrokinetic remediation technologies: a review. Journal of hazardous materials, 401,p.123345. doi.org/10.1016/j.jhazmat.2020.123345
6. Liu, Y., Zhuang, Y.F., Xiao, F. and Liu, Z., 2023. Mechanism for reverse electroosmotic flow and its impact on electrokinetic remediation of lead-contaminated kaolin. Acta Geotechnica, 18(3), pp.1515-1528. doi.org/10.1007/s11440-022-01640-3.
7. Cameselle, C., 2015. Enhancement of electro-osmotic flow during the electrokinetic treatment of a contaminated soil. Electrochimica Acta, 181, pp.31-38. doi.org/10.1016/j.electacta.2015.02.191.
8. Al-Hamdan, A.Z. and Reddy, K.R., 2011. Modeling of heavy metals transport in high acid buffering soil during electrokinetic remediation. In Geo-Frontiers 2011: Advances in Geotechnical Engineering (pp. 836-845). doi.org/10.1061/41165(397)86 .
9. Liu, L., Li, W., Song, W. and Guo, M., 2018. Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Science of the total environment, 633, pp.206-219. doi.org/10.1016/j.scitotenv.2018.03.161.
10. Ait Ahmed, O., 2020. The removal efficiency of lead from contaminated soil: modeling of cations and anions migration during the electrokinetic treatment. Journal of Environmental Science and Health, Part A, 55(10), pp.1218-1232. doi.org/10.1080/10934529.2020.1785781.
11. Nasiri, A., Jamshidi-Zanjani, A. and Darban, A.K., 2020. Application of enhanced electrokinetic approach to remediate Cr-contaminated soil: effect of chelating agents and permeable reactive barrier. Environmental Pollution, 266, p.115197. doi.org/10.1016/j.envpol.2020.115197.
12. Song, Y., Cang, L., Zuo, Y., Yang, J., Zhou, D., Duan, T., and Wang, R. “EDTA-enhanced electrokinetic remediation of aged electroplating contaminated soil assisted by combining dual cation-exchange membranes and circulation methods”, Chemosphere, 243, 125439, (2020). doi.org/10.1016/j.chemosphere.2019.125439.
13. Yao, Z., Li, J., Xie, H. and Yu, C., 2012. Review on remediation technologies of soil contaminated by heavy metals. Procedia Environmental Sciences, 16, pp.722-729. doi.org/10.1016/j.proenv.2012.10.099.
14. Pandey, B.K. and Rajesh, S., 2019. Enhanced engineering characteristics of soils by electro-osmotic treatment: an overview. Geotechnical and Geological Engineering, 37, pp.4649-4673. doi.org/10.1007/s10706-019-00973-3.
15. Pate, K. and Safier, P., 2022. Chemical metrology methods for CMP quality. In Advances in chemical mechanical planarization (CMP) (pp. 355-383). Woodhead Publishing. doi.org/10.1016/B978-0-12-821791-7.00017-4.
16. El-Mehalmey, W.A. and Alkordi, M.H., 2023. Electrokinetic remediation technique for soil contaminants. In Nanoremediation (pp. 229-258). Elsevier. doi.org/10.1016/B978-0-12-823874-5.00005-X
17. Darrow, M.M., Guo, R. and Trainor, T.P., 2020. Zeta potential of cation-treated soils and its implication on unfrozen water mobility. Cold Regions Science and Technology, 173,p.103029. doi.org/10.1016/j.coldregions.2020.103029.
18. Reddy, K.R., Chaparro, C. and Saichek, R.E., 2003. Removal of mercury from clayey soils using electrokinetics. Journal of Environmental Science and Health, Part A, 38(2), pp.307-338. doi.org/10.1081/ESE-120016897
19. West, L.J. and Stewart, D.I., 1995. Effect of zeta potential on soil electrokinesis. In Geoenvironment 2000: Characterization, Containment, Remediation, and Performance in Environmental Geotechnics (pp. 1535-1549). ASce.
20. Gu, Y.Y., Yeung, A.T., Koenig, A. and Li, H.J., 2009. Effects of chelating agents on zeta potential of cadmium-contaminated natural clay. Separation Science and Technology, 44(10), pp.2203-2222. doi.org/10.1080/01496390902976731
21. Lima, A.T., Hofmann, A., Reynolds, D., Ptacek, C.J., Van Cappellen, P., Ottosen, L.M., Pamukcu, S., Alshawabekh, A., O'Carroll, D.M., Riis, C. and Cox, E., 2017. Environmental electrokinetics for a sustainable subsurface. Chemosphere, 181, pp.122-133.doi.org/10.1016/j.chemosphere.2017.03.143.
22. Mansour Pour, A., 2018. Effect of overlapping double layers and pH on electrokinetics in a microchannel (Master'sthesis). doi.org/20.500.12932/29487.
23. Park, S.J. and Seo, M.K., 2011. Interface science and composites (Vol. 18). Academic Press. doi.org/10.1016/B978-0-12-375049-5.00006-2.
24. Kaya, A. and Yukselen, Y., 2005. Zeta potential of clay minerals and quartz contaminated by heavy metals. Canadian Geotechnical Journal, 42(5), pp.1280-1289. doi.org/10.1139/t05-048.
25. Zhang, L., Mishra, D., Zhang, K., Perdicakis, B., Pernitsky, D. and Lu, Q., 2020. Electrokinetic study of calcium carbonate and magnesium hydroxide particles in lime softening. Water Research, 186, p.116415. doi.org/10.1016/j.watres.2020.116415 .
26. Nikhil John, K. and Arnepalli, D.N., 2019. Factors influencing zeta potential of clayey soils. In Geotechnical Characterisation and Geoenvironmental Engineering: IGC 2016 Volume 1 (pp. 171-178). Springer Singapore. doi.org/10.1007/978-981-13-0899-4_21.
27. Yukselen-Aksoy, Y.E.L.İ.Z. and Kaya, A.J.E.E.S., 2011. A study of factors affecting on the zeta potential of kaolinite and quartz powder. Environmental Earth Sciences, 62, pp.697-705. doi.org/10.1007/s12665-010-0556-9.
28. Hesse, P.R. and Hesse, P.R., 1971. A textbook of soil chemical analysis.
29. Ouhadi, V., 2017. Development and Validation of the Modified Barium Chloride Method for CEC Measurement and Determination of Accurate Exchangeable Calcium Cation Concentration in Carbonated Clayey Soils. Modares Civil Engineering journal, 17(3), pp.21-34. [In Persian].
30. Ouhadi, V.R. and Amiri, M., 2011. Geo-environmental behaviour of nanoclays in interaction with heavy metals contaminant. Amirkabir J, Civil, 42(3), pp.29-36. [In Persian].
31. Ouhadi, V.R., Yong, R.N., Shariatmadari, N., Saeidijam, S., Goodarzi, A.R. and Safari-Zanjani, M., 2010. Impact of carbonate on the efficiency of heavy metal removal from kaolinite soil by the electrokinetic soil remediation method. Journal of Hazardous Materials, 173(1-3),pp.87-94. doi.org/10.1016/j.jhazmat.2009.08.052.
32. Yong, R.N., Galvez-Cloutier, R. and Phadungchewit, Y., 1993. Selective sequential extraction analysis of heavy-metal retention in soil. Canadian Geotechnical Journal, 30(5), pp.834-847. doi.org/10.1139/t93-074.
33. Mohamadi, S., Saeedi, M. and Mollahosseini, A., 2019. Enhanced electrokinetic remediation of mixed contaminants from a high buffering soil by focusing on mobility risk. Journal of Environmental Chemical Engineering, 7(6),p.103470. doi.org/10.1016/j.jece.2019.103470.
34. Wang, Y., Li, A. and Cui, C., 2021. Remediation of heavy metal-contaminated soils by electrokinetic technology: Mechanisms and applicability. Chemosphere, 265, p.129071. doi.org/10.1016/j.chemosphere.2020.129071.
35. Shariatmadari, N. Saiedijam, S., and Ouhadi, V. R. 2008. Study of carbonate effect on the efficiency of electrokinetics for Electrokinetics remediation for Zn removal from clayey soil in insitue scale. Modares Civil Engineering Journal, Vol. 7, No. 11, pp.45-59. [In Persian].
36. Sun, Z., Zhao, M., Chen, L., Gong, Z., Hu, J. and Ma, D., 2023. Electrokinetic remediation for the removal of heavy metals in soil: Limitations, solutions and prospection. Science of the Total Environment, p.165970. doi.org/10.1016/j.scitotenv.2023.165970.
37. Ouhadi, V.R., Bahadori Nezhad, O.R. and Amiri, M., 2014. Lead Retention of Carbonated Kaolinite in the Adsorption and Electrokinetics Processes. Modares Journal of Civil Engineering, 14(3). [In Persian].