1. Qasrawi, H.Y., 2000. Concrete strength by combined nondestructive methods simply and reliably predicted. Cement and Concrete Research, 30(5), pp.739-746. Available at: https://doi.org/10.1016/S0008-8846(00)00226-X.
2. Libretexts, 2016. 6.4: The Compton Effect by OpenStax is licensed CC BY, except where otherwise noted. Libretexts. Available at:
https://phys.libretexts.org (Accessed: 13 September 2022).
3. Compton, A.H., 1923. A quantum theory of the scattering of X-rays by light elements. Physical Review, 21(5), pp.483. Available at: https://doi.org/10.1103/PhysRev.21.483.
4. Caliskan, S., 2007. Examining Concrete Cores by Nondestructive Techniques. In: 4th Middle East NDT Conference and Exhibition. Citeseer. Available at: https://www.ndt.net/?id=5657.
5. Balázs, G.L., Lublóy, É. and Földes, T., 2018. Evaluation of concrete elements with X-ray computed tomography. Journal of Materials in Civil Engineering, 30(9), p.06018010. Available at: https://doi.org/10.1061/(ASCE)MT.1943-5533.0002389.
6. Suzuki, T., Shiotani, T. and Ohtsu, M., 2017. Evaluation of cracking damage in freeze-thawed concrete using acoustic emission and X-ray CT image. Construction and Building Materials, 136, pp.619-626. Available at: https://doi.org/10.1016/j.conbuildmat.2016.09.013.
7. Wei, Q., Leblon, B. and La Rocque, A., 2011. On the use of X-ray computed tomography for determining wood properties: a review. Canadian Journal of Forest Research, 41(11), pp.2120-2140. Available at: https://doi.org/10.1139/x11-111.
8. Xi, X. and Yang, S., 2019. Investigating the spatial development of corrosion of corner-located steel bar in concrete by X-ray computed tomography. Construction and Building Materials, 221, pp.177-189. Available at: https://doi.org/10.1016/j.conbuildmat.2019.06.023.
9. Vicente, M.A., Mínguez, J. and González, D.C., 2019. Computed tomography scanning of the internal microstructure, crack mechanisms, and structural behavior of fiber-reinforced concrete under static and cyclic bending tests. International Journal of Fatigue, 121, pp.9-19. Available at: https://doi.org/10.1016/j.ijfatigue.2018.11.023.
10. Han, J., 2013. Monitoring the evolution of accelerated carbonation of hardened cement pastes by X-ray computed tomography. Journal of Materials in Civil Engineering, 25(3), pp.347-354. Available at: https://doi.org/10.1061/(ASCE)MT.1943-5533.0000610.
11. Poinard, C., 2012. Compression triaxial behavior of concrete: the role of the mesostructure by analysis of X-ray tomographic images. European Journal of Environmental and Civil Engineering, 16(sup1), pp.s115-s136. Available at: https://doi.org/10.1080/19648189.2012.682458.
12. Rossi, E., 2020. The influence of defects at the steel/concrete interface for chloride-induced pitting corrosion of naturally-deteriorated 20-years-old specimens studied through X-ray Computed Tomography. Construction and Building Materials, 235, p.117474. Available at: https://doi.org/10.1016/j.conbuildmat.2019.117474.
13. Siryabe, E., 2020. X-ray digital detector array radiology to infer sagging depths in welded assemblies. NDT & E International, 111, p.102238. Available at: https://doi.org/10.1016/j.ndteint.2020.102238.
14. ÇALIGÜLÜ, U., 2016. X-ray radiography of AISI 4340-2205 steels welded by friction welding. Materiali in Tehnologije, 50(1). Available at: https://doi.org/10.17222/mit.2014.211.
15. Yenumula, L., 2019. Radiographic evaluation of gas tungsten arc welded joints used in nuclear applications by X-and gamma-rays. NDT & E International, 102, pp.144-152. Available at: https://doi.org/10.1016/j.ndteint.2018.11.017.
16. Souza, M., 2009. Detection of lack of fusion weld defects by radiography. In: AIP Conference Proceedings. American Institute of Physics. Available at: https://doi.org/10.1063/1.3114088.
17. Didžiokas, R., Januteniene, J. and Jonaityte, J., 2008. The impact of the internal welding defects on the joint strength. Transport, 23(3), pp.240-244. Available at: https://doi.org/10.3846/1648-4142.2008.23.240-244.
18. Türkmen, M., 2019. X-Ray Radiography of Micro-alloyed Steel Joined by Submerged Arc Welding. Sakarya University Journal of Science, 23(5), pp.896-901. Available at: https://doi.org/10.16984/saufenbilder.546992.
19. Deepak, J., 2021. Non-destructive testing (NDT) techniques for low carbon steel welded joints: A review and experimental study. Materials Today: Proceedings, 44, pp.3732-3737. Available at: https://doi.org/10.1016/j.matpr.2020.11.578.
20. Yamada, T., 2012. In-situ X-ray Observation of Molten Pool Depth during Laser Micro Welding. Journal of Laser Micro/Nanoengineering, 7(3). Available at: https://doi.org/10.2961/jlmn.2012.03.0002.
21. Stritt, P., 2016. Comprehensive process monitoring for laser welding process optimization. In: High-Power Laser Materials Processing: Lasers, Beam Delivery, Diagnostics, and Applications V. SPIE. Available at: https://doi.org/10.1117/12.2212814.
22. Bernachy-Barbe, F., 2020. Using X-ray microtomography to study the initiation of chloride-induced reinforcement corrosion in cracked concrete. Construction and Building Materials, 259, p.119574. Available at: https://doi.org/10.1016/j.conbuildmat.2020.119574.
23. Michel, A., 2011. Monitoring reinforcement corrosion and corrosion-induced cracking using non-destructive x-ray attenuation measurements. Cement and Concrete Research, 41(11), pp.1085-1094. Available at: https://doi.org/10.1016/j.cemconres.2011.06.006.
24. Dong, B., 2017. Monitoring reinforcement corrosion and corrosion-induced cracking by X-ray microcomputed tomography method. Cement and Concrete Research, 100, pp.311-321. Available at: https://doi.org/10.1016/j.cemconres.2017.07.009.
25. McGovern, M., 2010. Detection and assessment of wood decay using X-ray computer tomography. In: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2010. SPIE. Available at: https://doi.org/10.1117/12.843709.
26. Van den Bulcke, J., 2009. Three-dimensional X-ray imaging and analysis of fungi on and in wood. Microscopy and Microanalysis, 15(5), pp.395-402. Available at: https://doi.org/10.1017/S1431927609990419.
27. Salim, K., 2014. Characterization of Algerians oak wood by x-ray tomographic scanner and free software image-J. Wood Research, 59(2), pp.335-342. Available at: https://hal.science/hal-01195079.
28. Riggio, M., 2014. In situ assessment of structural timber using non-destructive techniques. Materials and Structures, 47(5), pp.749-766. Available at: https://doi.org/10.1617/s11527-013-0093-6.
29. Chubinskii, A., 2014. Physical nondestructive methods for the testing and evaluation of the structure of wood-based materials. Russian Journal of Nondestructive Testing, 50(11), pp.693-700. Available at: https://doi.org/10.1134/S1061830914110023.
30. Ge, Z., 2018. The detection of structure in wood by X-ray CT imaging technique. BioResources, 13(2), pp.3674-3685. Available at: https://doi.org/10.15376/biores.13.2.3674-3685.
31. Koddenberg, T., Zauner, M. and Militz, H., 2020. Three-dimensional exploration of soft-rot decayed conifer and angiosperm wood by X-ray micro-computed tomography. Micron, 134, p.102875. Available at: https://doi.org/10.1016/j.micron.2020.102875.
32. Grabner, M., Salaberger, D. and Okochi, T., 2009. The need of high resolution μ-X-ray CT in dendrochronology and in wood identification. In: 2009 Proceedings of 6th International Symposium on Image and Signal Processing and Analysis. IEEE. Available at: https://doi.org/10.1109/ISPA.2009.5297695.
33. Parracha, J., et al., 2021. Assessment of the density loss in anobiid infested pine using X-ray micro-computed tomography. Buildings, 11(4), p.173. Available at: https://doi.org/10.3390/buildings11040173.
34. Lister, P., 2004. Applications of x-ray computed tomography in the wood products industry. In: 16th WCNDT 2004-World Conference on NDT. Available at: https://www.ndt.net/?id=2464.
35. Halmshaw, R., 1995. Industrial radiology: theory and practice. Vol. 1. Springer Science & Business Media. Available at: https://books.google.com.
36. Vicente, M.A., Mínguez, J. and González, D.C., 2017. The use of computed tomography to explore the microstructure of materials in civil engineering: from rocks to concrete. In: Computed tomography - advanced applications, pp.207-230. Available at: https://doi.org/10.1016/S0008-8846(00)00226-X.
37. Sadra, H., Deevband, M.R. and Sardary, D., 2015. Estimated organ and effective dose from CT examinations using software impact at Shahid Beheshti University of Medical Sciences hospitals. Research in Medicine, 39(1), pp.26-29. [In Persian]. Available at: http://pejouhesh.sbmu.ac.ir/files/site1/user_files_ec23de/sadra-A-10-864-1-6d02ab1.pdf.