کنترل سلامت اعضاء سازه یی به روش توموگرافی اشعه ی ایکس

نوع مقاله : پژوهشی

نویسندگان

پژوهشکده‌ی مهندسی سازه، پژوهشگاه بین‌المللی زلزله‌شناسی و مهندسی زلزله ، تهران

چکیده

در نوشتار حاضر، به بررسی کارایی توموگرافی کامپیوتری اشعه‌ی ایکس در بازرسی سازه‌های شهری و سازه‌های ساختمانی پرداخته شده است. توموگرافی اشعه‌ی ایکس، یک روش غیرمخرب براساس جذب اشعه‌ی ایکس است، که کاربرد فراوانی در زمینه‌ی پزشکی دارد. با استفاده از روش اخیر می‌توان به مطالعه و بررسی ساختار داخلی سازه‌های قدیمی در جهت رفع عیوب و حفظ ایمنی ساکنان و همچنین نگهداری هر چه بهتر آن‌ها پرداخت؛ به‌طور مثال، سازه‌های شهری مانند تیر‌های برق و علائم راهنمایی و رانندگی، که در اثر مخاطره‌های طبیعی و یا فرسودگی به‌طور سالانه باعث وقوع خسارت‌های مالی و یا حتی جانی می‌شوند. از ویژگی‌های روش توموگرافی اشعه‌ی ایکس می‌توان به دقت و سرعت بالای آن در بررسی عضو اشاره کرد. با توجه به قابلیت‌‌های روش مذکور، در پژوهش حاضر با استفاده از یک دستگاه بازرسی چمدان در محل فرودگاه مهرآباد، به بررسی تعدادی نمونه‌ی بتنی و چوبی جهت شناسایی عیوبی، مانند: ترک، حفره‌ها، و یا گره در نمونه‌های چوبی پرداخته شده است. نتایج نشان دادند که ارتباط مستقیمی با توان دستگاه و مدت تابش اشعه به نمونه وجود دارد. با توجه به نتایج می‌توان عیوبی، مانند: ترک در بتن و یا گره در چوب را مشاهده کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

HEALTH MONITORING OF STRUCTURAL ELEMENTS USING CT-XRAY

نویسندگان [English]

  • F. Nateghi Alahi
  • S.S. Kamali
Professor, Research Institute of Structural Engineering, International Institute of Earthquake Engineering and Seismology
چکیده [English]

Structural health monitoring is becoming more reliable as technology advances. Many structures are in use throughout cities and environments that require constant attention due to fatigue of corrosion and environmental effects such as floods, earthquakes, or strong winds. This means that with the advent of new damage detection techniques, authorities can make sure that these vital structural elements, such as road signs or traffic lights and so on, are safe.

The important key to these techniques is that they must be simple and relatively inexpensive. Therefore, an attempt was made to use techniques in medical practice and adapt those to structural members.

In this article, the effectiveness of X-ray computed tomography in the inspection of urban structures and building structures is discussed. X-ray tomography is a non-destructive method based on X-ray absorption, widely used in the medical field. By using this method, it is possible to study and examine the internal structure of old structures to fix defects and maintain the safety of residents, as well as to maintain them as best as possible. For example, urban structures such as electric poles and traffic signs cause financial losses or even deaths due to natural hazards or wear and tear every year. One of the features of this method is its high accuracy and speed in checking the member. Considering the capabilities of this method, in this research, a baggage inspection device at the MehrAbad airport was used to examine a number of concrete and wooden samples to identify defects such as cracks, holes, or knots in wooden samples. The investigation results are directly related to the device's power and the duration of radiation used on the sample. According to the results, defects such as cracks in concrete or knots in wood can be observed.

کلیدواژه‌ها [English]

  • Non-destructive
  • X-ray
  • computed tomography
  • earthquake
  • destructive
  • structure
  • structural defects
1. Qasrawi, H.Y., 2000. Concrete strength by combined nondestructive methods simply and reliably predicted. Cement and Concrete Research, 30(5), pp.739-746. Available at: https://doi.org/10.1016/S0008-8846(00)00226-X. 2. Libretexts, 2016. 6.4: The Compton Effect by OpenStax is licensed CC BY, except where otherwise noted. Libretexts. Available at: https://phys.libretexts.org (Accessed: 13 September 2022). 3. Compton, A.H., 1923. A quantum theory of the scattering of X-rays by light elements. Physical Review, 21(5), pp.483. Available at: https://doi.org/10.1103/PhysRev.21.483. 4. Caliskan, S., 2007. Examining Concrete Cores by Nondestructive Techniques. In: 4th Middle East NDT Conference and Exhibition. Citeseer. Available at: https://www.ndt.net/?id=5657. 5. Balázs, G.L., Lublóy, É. and Földes, T., 2018. Evaluation of concrete elements with X-ray computed tomography. Journal of Materials in Civil Engineering, 30(9), p.06018010. Available at: https://doi.org/10.1061/(ASCE)MT.1943-5533.0002389. 6. Suzuki, T., Shiotani, T. and Ohtsu, M., 2017. Evaluation of cracking damage in freeze-thawed concrete using acoustic emission and X-ray CT image. Construction and Building Materials, 136, pp.619-626. Available at: https://doi.org/10.1016/j.conbuildmat.2016.09.013. 7. Wei, Q., Leblon, B. and La Rocque, A., 2011. On the use of X-ray computed tomography for determining wood properties: a review. Canadian Journal of Forest Research, 41(11), pp.2120-2140. Available at: https://doi.org/10.1139/x11-111. 8. Xi, X. and Yang, S., 2019. Investigating the spatial development of corrosion of corner-located steel bar in concrete by X-ray computed tomography. Construction and Building Materials, 221, pp.177-189. Available at: https://doi.org/10.1016/j.conbuildmat.2019.06.023. 9. Vicente, M.A., Mínguez, J. and González, D.C., 2019. Computed tomography scanning of the internal microstructure, crack mechanisms, and structural behavior of fiber-reinforced concrete under static and cyclic bending tests. International Journal of Fatigue, 121, pp.9-19. Available at: https://doi.org/10.1016/j.ijfatigue.2018.11.023. 10. Han, J., 2013. Monitoring the evolution of accelerated carbonation of hardened cement pastes by X-ray computed tomography. Journal of Materials in Civil Engineering, 25(3), pp.347-354. Available at: https://doi.org/10.1061/(ASCE)MT.1943-5533.0000610. 11. Poinard, C., 2012. Compression triaxial behavior of concrete: the role of the mesostructure by analysis of X-ray tomographic images. European Journal of Environmental and Civil Engineering, 16(sup1), pp.s115-s136. Available at: https://doi.org/10.1080/19648189.2012.682458. 12. Rossi, E., 2020. The influence of defects at the steel/concrete interface for chloride-induced pitting corrosion of naturally-deteriorated 20-years-old specimens studied through X-ray Computed Tomography. Construction and Building Materials, 235, p.117474. Available at: https://doi.org/10.1016/j.conbuildmat.2019.117474. 13. Siryabe, E., 2020. X-ray digital detector array radiology to infer sagging depths in welded assemblies. NDT & E International, 111, p.102238. Available at: https://doi.org/10.1016/j.ndteint.2020.102238. 14. ÇALIGÜLÜ, U., 2016. X-ray radiography of AISI 4340-2205 steels welded by friction welding. Materiali in Tehnologije, 50(1). Available at: https://doi.org/10.17222/mit.2014.211. 15. Yenumula, L., 2019. Radiographic evaluation of gas tungsten arc welded joints used in nuclear applications by X-and gamma-rays. NDT & E International, 102, pp.144-152. Available at: https://doi.org/10.1016/j.ndteint.2018.11.017. 16. Souza, M., 2009. Detection of lack of fusion weld defects by radiography. In: AIP Conference Proceedings. American Institute of Physics. Available at: https://doi.org/10.1063/1.3114088. 17. Didžiokas, R., Januteniene, J. and Jonaityte, J., 2008. The impact of the internal welding defects on the joint strength. Transport, 23(3), pp.240-244. Available at: https://doi.org/10.3846/1648-4142.2008.23.240-244. 18. Türkmen, M., 2019. X-Ray Radiography of Micro-alloyed Steel Joined by Submerged Arc Welding. Sakarya University Journal of Science, 23(5), pp.896-901. Available at: https://doi.org/10.16984/saufenbilder.546992. 19. Deepak, J., 2021. Non-destructive testing (NDT) techniques for low carbon steel welded joints: A review and experimental study. Materials Today: Proceedings, 44, pp.3732-3737. Available at: https://doi.org/10.1016/j.matpr.2020.11.578. 20. Yamada, T., 2012. In-situ X-ray Observation of Molten Pool Depth during Laser Micro Welding. Journal of Laser Micro/Nanoengineering, 7(3). Available at: https://doi.org/10.2961/jlmn.2012.03.0002. 21. Stritt, P., 2016. Comprehensive process monitoring for laser welding process optimization. In: High-Power Laser Materials Processing: Lasers, Beam Delivery, Diagnostics, and Applications V. SPIE. Available at: https://doi.org/10.1117/12.2212814. 22. Bernachy-Barbe, F., 2020. Using X-ray microtomography to study the initiation of chloride-induced reinforcement corrosion in cracked concrete. Construction and Building Materials, 259, p.119574. Available at: https://doi.org/10.1016/j.conbuildmat.2020.119574. 23. Michel, A., 2011. Monitoring reinforcement corrosion and corrosion-induced cracking using non-destructive x-ray attenuation measurements. Cement and Concrete Research, 41(11), pp.1085-1094. Available at: https://doi.org/10.1016/j.cemconres.2011.06.006. 24. Dong, B., 2017. Monitoring reinforcement corrosion and corrosion-induced cracking by X-ray microcomputed tomography method. Cement and Concrete Research, 100, pp.311-321. Available at: https://doi.org/10.1016/j.cemconres.2017.07.009. 25. McGovern, M., 2010. Detection and assessment of wood decay using X-ray computer tomography. In: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2010. SPIE. Available at: https://doi.org/10.1117/12.843709. 26. Van den Bulcke, J., 2009. Three-dimensional X-ray imaging and analysis of fungi on and in wood. Microscopy and Microanalysis, 15(5), pp.395-402. Available at: https://doi.org/10.1017/S1431927609990419. 27. Salim, K., 2014. Characterization of Algerians oak wood by x-ray tomographic scanner and free software image-J. Wood Research, 59(2), pp.335-342. Available at: https://hal.science/hal-01195079. 28. Riggio, M., 2014. In situ assessment of structural timber using non-destructive techniques. Materials and Structures, 47(5), pp.749-766. Available at: https://doi.org/10.1617/s11527-013-0093-6. 29. Chubinskii, A., 2014. Physical nondestructive methods for the testing and evaluation of the structure of wood-based materials. Russian Journal of Nondestructive Testing, 50(11), pp.693-700. Available at: https://doi.org/10.1134/S1061830914110023. 30. Ge, Z., 2018. The detection of structure in wood by X-ray CT imaging technique. BioResources, 13(2), pp.3674-3685. Available at: https://doi.org/10.15376/biores.13.2.3674-3685. 31. Koddenberg, T., Zauner, M. and Militz, H., 2020. Three-dimensional exploration of soft-rot decayed conifer and angiosperm wood by X-ray micro-computed tomography. Micron, 134, p.102875. Available at: https://doi.org/10.1016/j.micron.2020.102875. 32. Grabner, M., Salaberger, D. and Okochi, T., 2009. The need of high resolution μ-X-ray CT in dendrochronology and in wood identification. In: 2009 Proceedings of 6th International Symposium on Image and Signal Processing and Analysis. IEEE. Available at: https://doi.org/10.1109/ISPA.2009.5297695. 33. Parracha, J., et al., 2021. Assessment of the density loss in anobiid infested pine using X-ray micro-computed tomography. Buildings, 11(4), p.173. Available at: https://doi.org/10.3390/buildings11040173. 34. Lister, P., 2004. Applications of x-ray computed tomography in the wood products industry. In: 16th WCNDT 2004-World Conference on NDT. Available at: https://www.ndt.net/?id=2464. 35. Halmshaw, R., 1995. Industrial radiology: theory and practice. Vol. 1. Springer Science & Business Media. Available at: https://books.google.com. 36. Vicente, M.A., Mínguez, J. and González, D.C., 2017. The use of computed tomography to explore the microstructure of materials in civil engineering: from rocks to concrete. In: Computed tomography - advanced applications, pp.207-230. Available at: https://doi.org/10.1016/S0008-8846(00)00226-X. 37. Sadra, H., Deevband, M.R. and Sardary, D., 2015. Estimated organ and effective dose from CT examinations using software impact at Shahid Beheshti University of Medical Sciences hospitals. Research in Medicine, 39(1), pp.26-29. [In Persian]. Available at: http://pejouhesh.sbmu.ac.ir/files/site1/user_files_ec23de/sadra-A-10-864-1-6d02ab1.pdf.