بررسی اثر عمق مدفون و قطر تک‌شمع در عملکرد لرزه‌یی توربین بادی فراساحلی با انجام مدل‌سازی فیزیکی

نوع مقاله : پژوهشی

نویسندگان

دانشکده مهندسی عمران، دانشکدگان فنی، دانشگاه تهران، تهران، ایران

چکیده

در دهه‌های اخیر، به استفاده از انرژی تجدیدپذیر باد به وسیله‌ی توربین‌های بادی فراساحلی توجه بسیاری صورت گرفته و گسترش استفاده از آن‌ها، سبب نصب توربین‌های بادی فراساحلی در مناطق لرزه‌خیز نیز شده است. اغلب برای پی توربین‌های بادی فراساحلی، که در محیط دریا در معرض بارهای سیکلیک، مانند: باد، موج، و جریان‌های دریایی قرار دارند، از مونوپایل استفاده می‌شود. در پژوهش حاضر، با انجام 6 آزمایش در محیط g1 به بررسی اثر عمق مدفون، قطر، و خشک و اشباع‌بودن خاک در عملکرد لرزه‌یی مونوپایل پرداخته شده است. یافته‌ها نشان داده‌اند که قرارگیری مونوپایل در محیط اشباع نسبت به محیط خشکی، سبب تضعیف عملکرد لرزه‌یی می‌شود و افزایش عمق مدفون نیز در ابتدا تا طولی مشخص، سبب بهبود و در طول‌های بیشتر از آن، سبب تضعیف عملکرد لرزه‌یی می‌شود. همچنین افزایش 57 درصدی قطر مونوپایل سبب افزایش 24 درصدی شتاب روسازه و افزایش 40 درصدی جابجایی ماندگار شده است، که نشان‌دهنده‌ی تضعیف عملکرد لرزه‌یی است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the effect of driven length and diameter of monopile on seismic performance of offshore wind turbines through Physical Modeling

نویسندگان [English]

  • A.R. Bateni
  • M. Moradi
M.Sc., Geotechnical Eng., Faculty of Civil Eng., University of Tehran
چکیده [English]

Global warming and its following environmental problems have led to increased attention to the use of renewable energy sources in most countries worldwide, and wind energy has emerged as a significant contributor. The use of wind energy through offshore wind turbines is one of the clean energy harvesting methods that initially began in Europe. Due to their larger size and higher wind speeds, offshore wind turbines have gained popularity worldwide, including seismic areas such as the United States and Southeast Asia, especially China. These turbines are located in marine environments and are subject to cyclic loads caused by wind, waves, and ocean currents. Monopiles, cylindrical hollow piles with diameters ranging from 2 to 8 meters and lengths of approximately 60 meters, are widely used to install offshore wind turbines. The design regulations for these turbines often overlook influential factors such as soil-structure interaction and refer to seismic design guidelines for onshore turbines. In this research, the seismic performance of monopiles has been investigated by conducting six experiments using a shaking table in a 1g condition. The effects of driven length and monopile diameter were analyzed, along with the impact of the installation medium being either saturated or dry. Various parameters, including ground motion acceleration, displacement, and induced excess pore water pressure, were scrutinized in this study. The results indicate that the saturated environment weakens their seismic performance. Therefore, the seismic design considerations for monopiles, based on the existing guidelines for dry structures, are inadequate. Furthermore, increasing the monopile diameter by 57% causes a 24% increase in the acceleration of the superstructure, a 40% increase in the cumulative displacement, and a 30% decrease in the average maximum displacement of the cycles during loading. It was also observed that by increasing or decreasing the driven length by about 15% compared to the driven length of the base monopile, the acceleration value of the superstructure increases by more than 20%, and the cumulative displacement value decreases by about 60%. The average maximum displacement of the cycles decreases by 30%, with an increase of 33% in the driven length.

کلیدواژه‌ها [English]

  • Monopile
  • Offshore wind turbine
  • Physical Modeling
  • Seismic performance
1. EWEA, 2019. The European offshore wind industry. Key Trends and Statistics. 2. Wind Europe, 2021. Wind Energy in Europe: Statistics and the Outlook for 2022-2026. 3. Hansen, J. B., 1961. The ultimate resistance of rigid piles against transversal forces. Bulletin, Danish Geotechnical Institute, 12, 1-9. 4. Byrne, B. W., Burd, H. J., Zdravkovic, L., Abadie, C. N., Houlsby, G. T., Jardine, R. J., ... and Taborda, D. M., 2019. PISA design methods for offshore wind turbine monopiles. Offshore Technology Conference. OTC. doi.org/10.4043/29373-MS. 5. Padrón, L. A., Carbonari, S., Dezi, F., Morici, M., Bordón, J. D. and Leoni, G., 2022. Seismic response of large offshore wind turbines on monopile foundations including dynamic soil–structure interaction. Ocean Engineering, 257, 111653. doi.org/10.1016/j.oceaneng.2022.111653. 6. Mu, L., Kang, X., Feng, K., Huang, M. and Cao, J., 2018. Influence of vertical loads on lateral behaviour of monopiles in sand. European Journal of Environmental and Civil Engineering, 22(sup1), pp.286-301. doi.org/10.1080/19648189.2017.1359112. 7. Yu, H., Zeng, X., Li, B. and Lian, J., 2015. Centrifuge modeling of offshore wind foundations under earthquake loading. Soil Dynamics and Earthquake Engineering, 77, pp. 402-415. doi.org/10.1016/j.soildyn.2015.06.014. 8. Seong, J. T., Ha, J. G., Kim, J. H., Park, H. J. and Kim, D. S., 2017. Centrifuge modeling to evaluate natural frequency and seismic behavior of offshore wind turbine considering SFSI. Wind Energy, 20(10), pp.1787-1800. doi.org/10.1002/we.2127. 9. Seong, J. T. and Kim, D. S., 2019. Seismic evaluation of offshore wind turbine by geotechnical centrifuge test. Wind Energy, 22(8), pp.1034-1042. doi.org/10.1002/we.2338. 10. LeBlanc, C., Houlsby, G. T. and Byrne, B. W., 2010. Response of stiff piles in sand to long-term cyclic lateral loading. Géotechnique, 60(2), pp.79-90. doi.org/10.1680/geot.7.00196. 11. Long, J. H. and Vanneste, G., 1994. Effects of cyclic lateral loads on piles in sand. Journal of Geotechnical Engineering, 120(1), pp.225-244. doi.org/10.1061/(ASCE)0733-9410(1994)120:1(225). 12. Achmus, M., Kuo, Y. S. and Abdel-Rahman, K., 2009. Behavior of monopile foundations under cyclic lateral load. Computers and Geotechnics, 36(5), pp.725-735. doi.org/10.1016/j.compgeo.2008.12.003. 13. Wang, X., Zeng, X., Yang, X. and Li, J., 2019. Seismic response of offshore wind turbine with hybrid monopile foundation based on centrifuge modelling. Applied Energy, 235, pp.1335-1350. doi.org/10.1016/j.apenergy.2018.11.057. 14. Wang, X., Zeng, X., Li, X. and Li, J., 2020. Liquefaction characteristics of offshore wind turbine with hybrid monopile foundation via centrifuge modelling. Renewable Energy, 145, pp.2358-2372. doi.org/10.1016/j.renene.2019.07.106. 15. Lau, B. H., 2015. Cyclic behaviour of monopile foundations for offshore wind turbines in clay. Doctoral dissertation, University of Cambridge. doi.org/10.17863/CAM.14093. 16. Bhattacharya, S., Nikitas, N., Garnsey, J., Alexander, N. A., Cox, J., Lombardi, D., ... and Nash, D. F., 2013. Observed dynamic soil–structure interaction in scale testing of offshore wind turbine foundations. Soil Dynamics and Earthquake Engineering, 54, pp.47-60. doi.org/10.1016/j.soildyn.2013.07.012. 17. Dashti, S., Bray, J. D., Pestana, J. M., Riemer, M. and Wilson, D., 2010. Mechanisms of seismically induced settlement of buildings with shallow foundations on liquefiable soil. Journal of Geotechnical and Geoenvironmental Engineering, 136(1), pp.151-164. doi.org/10.1061/(ASCE)GT.1943-5606.0000179. 18. van der Tempel, J. and Molenaar, D. P., 2002. Wind turbine structural dynamics–a review of the principles for modern power generation, onshore and offshore. Wind Engineering, 26(4), pp.211-222. doi.org/10.1260/030952402321039412. 19. Iai, S., Tobita, T. and Nakahara, T., 2005. Generalised scaling relations for dynamic centrifuge tests. Geotechnique, 55(5), pp.355-362. doi.org/10.1680/geot.2005.55.5.355. 20. Liu, J., Yuan, B. and Dimaano, R., 2011. Optical measurement of sand deformation around a laterally loaded pile. Journal of Testing and Evaluation, 39(5), pp.754-759. doi.org/10.1520/JTE103313. 21. DNV, G., 2014. Design of offshore wind turbine structures. Offshore Standard DNV-OS-J101. DNV GL AS, Høvik (Norway).