مدل جدید جنبش نیرومند زمین برای پیش‌‌بینی بیشینه ی شتاب، طیف‌های شبه‌شتاب و طیف‌های جابجایی در ایران

نوع مقاله : پژوهشی

نویسندگان

دانشکده‌ی مهندسی عمران، دانشگاه صنعتی شریف، تهران، ایران

چکیده

در مطالعه‌ی حاضر، یک مدل جدید جنبش زمین برای ایران، به‌منظور پیش‌بینی بیشینه‌ی شتاب زمین، طیف‌های شبه‌شتاب در میرایی‌های 2، 5، و 10 درصد و طیف‌های جابجایی با نسبت مقاومت به وزن 05/0 تا 3/0، در دوره‌های تناوبی 04/0 تا 4 ثانیه توسعه یافته است. پایگاه ‌داده‌ی مطالعه‌ی حاضر، شامل 659 رکورد از 115 رویداد اصلی و پوسته‌‌یی کم‌عمق رخداده در ایران از سال‌های 1976 تا 2022 با محدوده‌ی بزرگای 4/7 Mw  5 و فاصله‌ی رومرکزی تا 200 کیلومتر بوده است. ضرایب اثر تصادفی در مدل رگرسیون، اثر مختلط برای ثبت تغییرات منطقه‌‌یی میان مناطق پنج‌گانه‌ی فلات ایران تعریف شده و هیچ‌گونه تفاوت آماری در بین مناطق مذکور ملاحظه نشده است. آثاز غیرخطی ساختگاه با استفاده از پارامتر 30VS (متوسط سرعت موج برشی در 30 متر فوقانی پروفیل خاک) در مدل توسعه‌یافته در نظر گرفته شد. توزیع باقیمانده‌های به‌دست‌آمده، شامل: باقیمانده‌های میان‌رویدادی، ایستگاه به ایستگاه، و رویداد- ایستگاه تصحیح‌شده، هیچ‌گونه سوگیری قابل‌توجهی را برای مدل توسعه‌یافته نشان نداده‌اند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A new strong ground motion model for predicting Peak Ground Acceleration (PGA), pseudo-acceleration spectra and displacement spectra in Iran

نویسندگان [English]

  • A.R. Hajipour
  • H. Moghaddam
Department of Civil Engineering, Sharif University of Technology, Tehran, Iran.
چکیده [English]

Due to the inelasticity of the ground and geometric expansion, seismic waves are reduced by moving away from the center of wave propagation, which is called the attenuation of seismic waves. Therefore, the ground motions that occur at the site of the structures are different from the ground motions that are emitted from the source. The upcoming study investigates the attenuation of seismic waves in the geographical area of Iran based on the accelerogram data of Iran.
In this study, a new ground motion model (GMM) for Iran is developed to estimate peak ground acceleration (PGA), pseudo-acceleration spectral values (PSA) in 2, 5, and 10 percent damping, and displacement spectral values (Sd) at 21 oscillator periods ranging from 0.04 s to 4 s. The displacement spectra considered in this research are those with a constant resistance-to-weight ratio, which includes both elastic and inelastic displacement types. Also, the considered resistance-to-weight ratios include five ratios from 0.05 to 0.3. The database of this study consists of 659 records of 115 shallow crustal mainshocks that occurred in Iran from 1976 to 2022 with a magnitude range of 5≤Mw≤7.4 and an epicentral distance range of 0 to 200 km. Random-effect coefficients were defined in the mixed-effect regression model for regional differences among the five regions of the Iranian plateau, and no statistical differences were detected among these regions. The effects of the site soil's nonlinear response are considered in the developed GMM using the VS30 parameter (average shear wave velocity in the upper 30 meters of the soil profile). The residuals of the proposed GMM are decomposed into three between-event, site-to-site, and event-site-corrected components, and their distributions are examined against the predictor variables. The distribution of residuals obtained showed no significant bias for the developed GMM. The output of this research is a GMM for Iran, which can be used to estimate the spectrum of pseudo-elastic acceleration and the spectrum of elastic and inelastic displacement.

کلیدواژه‌ها [English]

  • Strong Ground Motion Model
  • Ground Motion Prediction Equations
  • Pseudo-Acceleration Spectrum
  • Elastic Displacement Spectrum
  • Inelastic Displacement Spectrum
  • Iran Earthquake Catalog
1. Stöcklin, J., 1968. Structural history and tectonics of Iran: a review. AAPG bulletin, 52(7), pp.1229-1258. doi.org/10.1306/5D25C4A5-16C1-11D7-8645000102C1865D 2. Takin, M., 1972. Iranian geology and continental drift in the Middle East. nature, 235(5334), pp.147-150. doi.org/10.1038/235147a0 3. Nowroozi, A.A., 1976. Seismotectonic provinces of Iran. Bulletin of the Seismological Society of America, 66(4), pp.1249-1276. doi.org/10.1785/BSSA0660041249 4. Mirzaei, N., Mengtan, G. and Yuntai, C., 1998. Seismic source regionalization for seismic zoning of Iran: Major seismotectonic provinces. Journal Of Earthquake Prediction Research, 7, pp.465-495. 5. Makiabadi, H.Y., Nasrabadi, A. and Sepahvand, M.R., 2021. Attenuation of ground-motion spectral amplitudes in central and eastern Iran. Physics of the Earth and Planetary Interiors, 310, p.106598. doi.org/10.1016/j.pepi.2020.106598 6. Pourzeynali, S. and Khadivyan, A., 2022. Attenuation relationships for horizontal and vertical peak and spectral accelerations for alborz zone of iran. Journal of Earthquake Engineering, 26(14), pp.7469-7485. doi.org/10.1080/13632469.2021.1964645 7. Zare, M., Bard, P.Y. and Ghafory-Ashtiany, M., 1999. Site characterizations for the Iranian strong motion network. Soil Dynamics and Earthquake Engineering, 18(2), pp.101-123. doi.org/10.1016/S0267-7261(98)00040-2 8. Nowroozi, A.A., 2005. Attenuation relations for peak horizontal and vertical accelerations of earthquake ground motion in iran: a preliminary analysis. Journal of Seismology and Earthquake Engineering, 7(2), pp.109-128. 9. Ghasemi, H., Zare, M., Fukushima, Y. and Koketsu, K., 2009. An empirical spectral ground-motion model for Iran. Journal Of Seismology, 13, pp.499-515. doi.org/10.1007/s10950-008-9143-x 10. Soghrat, M.R., Khaji, N. and Zafarani, H., 2012. Simulation of strong ground motion in northern Iran using the specific barrier model. Geophysical Journal International, 188(2), pp.645-679. doi.org/10.1111/j.1365-246x.2011.05287.x 11. Zafarani, H. and Soghrat, M., 2012. Simulation of ground motion in the Zagros region of Iran using the specific barrier model and the stochastic method. Bulletin of the Seismological Society of America, 102(5), pp.2031-2045. doi.org/10.1785/0120110315 12. Sedaghati, F. and Pezeshk, S., 2017. Partially nonergodic empirical ground‐motion models for predicting horizontal and vertical PGV, PGA, and 5% damped linear acceleration response spectra using data from the Iranian plateau. Bulletin of the Seismological Society of America, 107(2), pp.934-948. doi.org/10.1785/0120160205 13. Kotha, S.R., Bindi, D. and Cotton, F., 2016. Partially non-ergodic region specific GMPE for Europe and Middle-East. Bulletin of Earthquake Engineering, 14, pp.1245-1263. doi.org/10.1007/s10518-016-9875-x 14. Farajpour, Z., Pezeshk, S. and Zare, M., 2019. A new empirical ground‐motion model for Iran. Bulletin of the Seismological Society of America, 109(2), pp.732-744. doi.org/10.1785/0120180139 15. Hassani, N., Ghodrati Amiri, G., Bararnia, M. and Sinaeian, F., 2017. Ground motion prediction equation for inelastic spectral displacement in Iran. Scientia Iranica, 24(1), pp.164-182. doi.org/10.24200/SCI.2017.4023 16. Campbell, K.W. and Bozorgnia, Y., 2014. NGA-West2 ground motion model for the average horizontal components of PGA, PGV, and 5% damped linear acceleration response spectra. Earthquake Spectra, 30(3), pp.1087-1115. doi.org/10.1193/062913eqs175m 17. Zafarani, H. and Soghrat, M.R., 2023. An Empirical Spectral Ground-Motion Model for Iran Using Truncated Iranian Strong-Motion Database Enriched by Near-Field Records. Journal of Earthquake Engineering, pp.1-24. doi.org/10.1080/13632469.2023.2226223 18. Douglas, J., 2021. Ground motion prediction equations 1964–2021. Department of Civil and Environmental Engineering University of Strathclyde, Glasgow, United Kingdom. 19. Ghodrati Amiri, G., Zahedi, M., Mahdavian, A. and Gholami, S., 2004. Appropriate frequency band for correcting Iranian accelerograms in different site condition. Journal of Faculty of Engineering, University of Tehran, 38(2), pp. 231-249. [In Persian]. 20. Heath, D.C., Wald, D.J., Worden, C.B., Thompson, E.M. and Smoczyk, G.M., 2020. A global hybrid VS 30 map with a topographic slope–based default and regional map insets. Earthquake Spectra, 36(3), pp.1570-1584. doi.org/10.1177/87552930209111 21. Farajpour, Z., Zare, M., Pezeshk, S., Ansari, A. and Farzanegan, E., 2018. Near-source strong motion database catalog for Iran. Arabian Journal of Geosciences, 11, pp.1-16. doi.org/10.1007/s12517-018-3413-x 22. Wells, D.L. and Coppersmith, K.J., 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the seismological Society of America, 84(4), pp.974-1002. doi.org/10.1785/BSSA0840040974 23. Kaklamanos, J., Baise, L.G. and Boore, D.M., 2011. Estimating unknown input parameters when implementing the NGA ground-motion prediction equations in engineering practice. Earthquake Spectra, 27(4), pp.1219-1235. doi.org/10.1193/1.3650372 24. Gardner, J.K. and Knopoff, L., 1974. Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian?. Bulletin Of The Seismological Society Of America, 64(5), pp.1363-1367. doi.org/10.1785/bssa0640051363 25. Building and Housing Research Center, 2014. Iranian code of practice for seismic resistant design of buildings. Standard No. 2800. [In Persian]. 26. Council, B.S.S., 2009. NEHRP recommended seismic provisions for new buildings and other structures. Rep. FEMA P, 750. 27. Lindstrom, M.J. and Bates, D.M., 1990. Nonlinear mixed effects models for repeated measures data. Biometrics,pp.673-687. doi.org/10.2307/2532087 28. Atik, L.A., Abrahamson, N., Bommer, J.J., Scherbaum, F., Cotton, F. and Kuehn, N., 2010. The variability of ground-motion prediction models and its components. Seismological Research Letters, 81(5), pp.794-801. doi.org/10.1785/gssrl.81.5.794 29. Walling, M., Silva, W. and Abrahamson, N., 2008. Nonlinear site amplification factors for constraining the NGA models. Earthquake Spectra, 24(1), pp.243-255. doi.org/10.1193/1.2934350 30. Silva, W.J., 2005. Site response simulations for the NGA project. Report prepared for the Pacific Earthquake Engineering Research Center.