1. Seed, H.B., Idriss, I.M., 1971. Simplified procedure for evaluating soil liquefaction potential. J Soil Mech Found ASCE 97(9):1249-1273. doi.org/10.1061/JSFEAQ.0001662.
2. Dobry, R., Ladd, R. S., Yokel, F. Y., Chung, R. M., Powell, D., 1982. Prediction of pore water pressure buildup and liquefaction of sands during earthquakes by the cyclic strain method (Vol. 138). Gaithersburg, MD: National Bureau of Standards.
3. Law, K. T., Cao, Y. L., He, G. N., 1990. An energy approach for assessing seismic liquefaction potential. Canadian Geotechnical Journal, 27(3), 320-329. doi.org/10.1139/t90-043.
4. Seed, H. B., 1982. Ground motions and soil liquefaction during earthquakes. Earthquake Engineering Research institute.
5. Idriss, I. M., Boulanger, R. W., 2006. Semi-empirical procedures for evaluating liquefaction potential during earthquakes. Soil Dynamics and Earthquake Engineering, 26(2-4), 115-130. doi.org/10.1016/j.soildyn.2004.11.023
6. Johari, A., Fazeli, A., & Javadi, A. A., 2013. An investigation into application of jointly distributed random variables method in reliability assessment of rock slope stability. Computers and Geotechnics, 47, 42-47. doi.org/10.1016/j.compgeo.2012.07.003
7. Youd, T. L., Idriss, I. M., 2001. Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. Journal of Geotechnical and Geoenvironmental Engineering, 127(4), 297-313. doi.org/10.1061/(ASCE)1090-0241(2001)127:4(297)
8. Golmoghani Ebrahimi, S., Noorzad, A., & Kupaei, H. J., 2023. Reliability Analysis of Soil Liquefaction Using Improved Hypercube Sampling (IHS) Method. International Journal of Civil Engineering, 1-13. doi.org/10.1007/s40999-023-00863-z
9. Johari, A., Pour, J. R., & Javadi, A., 2015. Reliability analysis of static liquefaction of loose sand using the random finite element method. Engineering Computations, 32(7), 2100-2119. doi.org/10.1108/EC-07-2014-0152
10. Johari, A., Khodaparast, A. R., & Javadi, A. A., 2019. An analytical approach to probabilistic modeling of liquefaction based on shear wave velocity. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 43, 263-275. doi.org/10.1007/s40996-018-0163-7
11. Sett, S., & Chattopadhyay, K. K., 2022. Liquefaction mapping of Kolkata city using FOSM method. In Earthquake Geotechnics: Select Proceedings of 7th ICRAGEE 2021 (pp. 207-223). Springer Singapore.
12. Duan, W., Zhao, Z., Cai, G., Pu, Sh., Liu, S., Dong, X., 2022. Evaluating model uncertainty of an in situ state parameter-based simplified method for reliability analysis of liquefaction potential. Computer and Geotechnics, Vol. 151, 104957. doi.org/10.1016/j.compgeo.2022.104957
13. Kwak, B. M., Lee, T. W., 1987. Sensitivity analysis for reliability-based optimization using an AFOSM method. Computers & structures, 27(3), 399-406. doi.org/10.1016/0045-7949(87)90064-2
14. Jha, S. K., Suzuki, K., 2009. Reliability analysis of soil liquefaction based on standard penetration test. Computers and Geotechnics, 36(4), 589-596. doi.org/10.1016/j.compgeo.2008.10.004
15. Popescu, R., Prevost, J. H., Deodatis, G., 2005. 3D effects in seismic liquefaction of stochastically variable soil deposits. Geotechnique, 55(1), 21-31. doi.org/10.1680/geot.2005.55.1.21
16. Kasebzadeh, J., Noorzad, A., Mahboubi, A. R., 2015. Reliability Analysis of Liquefaction Utilizing Monte Carlo Simulation Based on Simplified Stress Method. Journal of Seismology and Earthquake Engineering, 17(4), 233-248.
17. Beachkofski, B., Grandhi, R., 2002. Improved distributed hypercube sampling. In 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (p. 1274). doi.org/10.2514/6.2002-1274
18. Boulanger, R. W., Idriss, I. M., 2014. CPT and SPT based liquefaction triggering procedures. Report No. UCD/CGM.-14, 1.
19. Duncan, J. M., 2000. Factors of safety and reliability in geotechnical engineering. Journal of geotechnical and geoenvironmental engineering, 126(4), 307-316. doi.org/10.1061/(ASCE)1090-0241(2000)126:4(307)
20. Phoon, K. K. (Ed.)., 2008. Reliability-based Design in Geotechnical Engineering: Computations and Applications. CRC Press.
21. Chandler, D. S., 1996. Monte Carlo simulation to evaluate slope stability. In Uncertainty in the Geologic Environment: From Theory to Practice (pp. 474-493). ASCE.
22. Hammond, C. J., Prellwitz, R. W., Miller, S. M., 1992. Landslide hazard assessment using Monte Carlo simulation. In Proceedings of 6th International Symposium on Landslides, Christchurch, New Zealand, Balkema (Vol. 2, pp. 251-294).
23. Harr, M. E., 1984. Reliability-based design in civil engineering, 1984 Henry M. Shaw Lecture, Dept. of Civil Engineering, North Carolina State University, Raleigh, NC.
24. Jones, A. L., Kramer, S. L., Arduino, P., 2002. Estimation of uncertainty in geotechnical properties for performance-based earthquake engineering. Pacific Earthquake Engineering Research Center, College of Engineering, University of California.
25. Juang, C. H., Chen, C. J., Jiang, T., & Andrus, R. D., 2000. Risk-based liquefaction potential evaluation using standard penetration tests. Canadian Geotechnical Journal, 37(6), 1195-1208. doi.org/10.1139/t00-064
26. Ayad, F., Bekkouche, A., Houmadi, Y., 2014. Sensitivity analysis of soil liquefaction potential. Earth Science Research, 3(1), 14. dx.doi.org/10.5539/esr.v3n1p14