بررسی پارامترهای موثر در روانگرایی خاک‌های ماسه‌ای سست با استفاده از روش مربع لاتین بهبودیافته

نوع مقاله : پژوهشی

نویسندگان

1 دانشکده‌ی فنی و مهندسی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی ،تهران، ایران.

2 دانشکده‌ی مهندسی عمران، آب و محیط زیست، دانشگاه شهید بهشتی، تهران، ایران.

چکیده

وقوع پدیده‌ی روانگرایی در خاک‌های سُست ماسه‌یی در شرایط اشباع تحت بارهای لرزه‌یی موجب می‌شود ذرات خاک تمایل به کاهش حجم داشته باشند. به‌طوری که در صورت عدم امکان زهکشی، فشار آب حفره‌یی درون خاک افزایش می‌یابد و در شرایط تنش ثابت، تنش مؤثر بین ذرات به صفر نزدیک می‌شود. در چنین حالتی ذرات خاک هیچ‌گونه مقاومت برشی ندارد و حالت روانگرایی رخ می‌دهد. در پژوهش حاضر، تحلیل قابلیت اعتماد روانگرایی با درنظرگرفتن عدم قطعیت‌ها با استفاده از آخرین اصلاحات ارائه‌شده توسط ادریس و بولانژه (2014) برای روش ساده‌شده و با به‌کارگیری روش مربع لاتین بهبودیافته (IHS) انجام شده است. مقایسه‌ی نتایج روش IHS با شبیه‌سازی مونت‌کارلو نشان داد که روش پیشنهادی برای تحلیل روانگرایی قابل اعتماد است. تحلیل حساسیت انجام‌‌شده بر روی محدوده‌ی وسیعی از خاک‌های روانگرا و غیرروانگرا بر مبنای ضرایب تغییرات پارامترها نشان داد که تغییرپذیری پارامترهای خاک و بارگذاری زلزله می‌تواند تأثیر مهمی در احتمال روانگرایی داشته باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

AN INVESTIGATION ON THE EFFECTIVE PARAMETERS OF LOOSE SANDS LIQUEFACTION POTENTIAL USING IMPROVED HYPERCUBE SAMPLING METHOD

نویسندگان [English]

  • S. Golmoghani Ebrahimi 1
  • A. Noorzad 2
  • H. Javaheri Koupaei 1
1 Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Dean, Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran
چکیده [English]

The occurrence of the liquefaction phenomenon in saturated loose sandy soils under seismic loads causes the soil particles to tend to decrease in volume. So, if drainage is not possible, the pore water pressure inside the soil increases, and in constant stress conditions, the effective stress between particles approaches zero. In this case, the soil particles have no shear resistance, and liquefaction occurs. Liquefaction is one of the important issues of concern in seismic geotechnical engineering, which involves many uncertainties in soil and earthquake parameters. The most common method to evaluate the potential of liquefaction is a deterministic method, which cannot consider the pertinent uncertainties. Soil properties are uncertain due to various sources of variability of soil deposit formation. Currently, there is a less reliable procedure to account for all pertinent uncertainties in predicting the occurrence of soil liquefaction phenomena when subjected to strong ground motion. In this research, liquefaction reliability analysis was performed by considering the soil and earthquake loading uncertainties using the latest modifications provided by Idris and Boulanger (2014) for the simplified method and using the improved hypercube sampling (IHS) method. Comparing the results of the IHS method with Monte Carlo simulation showed that the proposed method is reliable for liquefaction analysis. The analyses have been performed on well-documented historical cases. The Monte Carlo method has been accepted as the benchmark method in most studies based on liquefaction reliability analysis. Comparison of the Monte Carlo (MC) method and IHS results indicate that the IHS method is more accurate, reliable, and capable than MC for analyzing the reliability of liquefaction and can be used as a benchmark approach in future studies. The results show that the proposed approach is a favorable and useful tool for the reliability analysis of liquefaction potential estimations. Sensitivity analysis based on the coefficient of variation on a wide range of liquefaction and non-liquefaction case histories illustrates that the variability of soil parameters and earthquake loading can affect the probability of liquefaction. It is worth noting that different parameters may have the most effect on the probability of liquefaction depending on soil conditions.

کلیدواژه‌ها [English]

  • Liquefaction
  • uncertainty
  • loose sandy soil
  • reliability analysis
  • improved hypercube sampling
1. Seed, H.B., Idriss, I.M., 1971. Simplified procedure for evaluating soil liquefaction potential. J Soil Mech Found ASCE 97(9):1249-1273‏. doi.org/10.1061/JSFEAQ.0001662. 2. Dobry, R., Ladd, R. S., Yokel, F. Y., Chung, R. M., Powell, D., 1982. Prediction of pore water pressure buildup and liquefaction of sands during earthquakes by the cyclic strain method (Vol. 138). Gaithersburg, MD: National Bureau of Standards.‏ 3. Law, K. T., Cao, Y. L., He, G. N., 1990. An energy approach for assessing seismic liquefaction potential. Canadian Geotechnical Journal, 27(3), 320-329.‏ doi.org/10.1139/t90-043. 4. Seed, H. B., 1982. Ground motions and soil liquefaction during earthquakes. Earthquake Engineering Research institute.‏ 5. Idriss, I. M., Boulanger, R. W., 2006. Semi-empirical procedures for evaluating liquefaction potential during earthquakes. Soil Dynamics and Earthquake Engineering, 26(2-4), 115-130.‏ doi.org/10.1016/j.soildyn.2004.11.023 6. Johari, A., Fazeli, A., & Javadi, A. A., 2013. An investigation into application of jointly distributed random variables method in reliability assessment of rock slope stability. Computers and Geotechnics, 47, 42-47.‏ doi.org/10.1016/j.compgeo.2012.07.003 7. Youd, T. L., Idriss, I. M., 2001. Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. Journal of Geotechnical and Geoenvironmental Engineering, 127(4), 297-313.‏ doi.org/10.1061/(ASCE)1090-0241(2001)127:4(297) 8. Golmoghani Ebrahimi, S., Noorzad, A., & Kupaei, H. J., 2023. Reliability Analysis of Soil Liquefaction Using Improved Hypercube Sampling (IHS) Method. International Journal of Civil Engineering, 1-13.‏ doi.org/10.1007/s40999-023-00863-z 9. Johari, A., Pour, J. R., & Javadi, A., 2015. Reliability analysis of static liquefaction of loose sand using the random finite element method. Engineering Computations, 32(7), 2100-2119.‏ doi.org/10.1108/EC-07-2014-0152 10. Johari, A., Khodaparast, A. R., & Javadi, A. A., 2019. An analytical approach to probabilistic modeling of liquefaction based on shear wave velocity. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 43, 263-275.‏ doi.org/10.1007/s40996-018-0163-7 11. Sett, S., & Chattopadhyay, K. K., 2022. Liquefaction mapping of Kolkata city using FOSM method. In Earthquake Geotechnics: Select Proceedings of 7th ICRAGEE 2021 (pp. 207-223). Springer Singapore.‏ 12. Duan, W., Zhao, Z., Cai, G., Pu, Sh., Liu, S., Dong, X., 2022. Evaluating model uncertainty of an in situ state parameter-based simplified method for reliability analysis of liquefaction potential. Computer and Geotechnics, Vol. 151, 104957. doi.org/10.1016/j.compgeo.2022.104957 13. Kwak, B. M., Lee, T. W., 1987. Sensitivity analysis for reliability-based optimization using an AFOSM method. Computers & structures, 27(3), 399-406.‏ doi.org/10.1016/0045-7949(87)90064-2 14. Jha, S. K., Suzuki, K., 2009. Reliability analysis of soil liquefaction based on standard penetration test. Computers and Geotechnics, 36(4), 589-596. doi.org/10.1016/j.compgeo.2008.10.004‏ 15. Popescu, R., Prevost, J. H., Deodatis, G., 2005. 3D effects in seismic liquefaction of stochastically variable soil deposits. Geotechnique, 55(1), 21-31.‏ doi.org/10.1680/geot.2005.55.1.21 16. Kasebzadeh, J., Noorzad, A., Mahboubi, A. R., 2015. Reliability Analysis of Liquefaction Utilizing Monte Carlo Simulation Based on Simplified Stress Method. Journal of Seismology and Earthquake Engineering, 17(4), 233-248.‏ 17. Beachkofski, B., Grandhi, R., 2002. Improved distributed hypercube sampling. In 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (p. 1274). doi.org/10.2514/6.2002-1274‏ 18. Boulanger, R. W., Idriss, I. M., 2014. CPT and SPT based liquefaction triggering procedures. Report No. UCD/CGM.-14, 1.‏ 19. Duncan, J. M., 2000. Factors of safety and reliability in geotechnical engineering. Journal of geotechnical and geoenvironmental engineering, 126(4), 307-316.‏ doi.org/10.1061/(ASCE)1090-0241(2000)126:4(307) 20. Phoon, K. K. (Ed.)., 2008. Reliability-based Design in Geotechnical Engineering: Computations and Applications. CRC Press.‏ 21. Chandler, D. S., 1996. Monte Carlo simulation to evaluate slope stability. In Uncertainty in the Geologic Environment: From Theory to Practice (pp. 474-493). ASCE.‏ 22. Hammond, C. J., Prellwitz, R. W., Miller, S. M., 1992. Landslide hazard assessment using Monte Carlo simulation. In Proceedings of 6th International Symposium on Landslides, Christchurch, New Zealand, Balkema (Vol. 2, pp. 251-294).‏ 23. Harr, M. E., 1984. Reliability-based design in civil engineering, 1984 Henry M. Shaw Lecture, Dept. of Civil Engineering, North Carolina State University, Raleigh, NC.‏ 24. Jones, A. L., Kramer, S. L., Arduino, P., 2002. Estimation of uncertainty in geotechnical properties for performance-based earthquake engineering. Pacific Earthquake Engineering Research Center, College of Engineering, University of California.‏ 25. Juang, C. H., Chen, C. J., Jiang, T., & Andrus, R. D., 2000. Risk-based liquefaction potential evaluation using standard penetration tests. Canadian Geotechnical Journal, 37(6), 1195-1208.‏ doi.org/10.1139/t00-064 26. Ayad, F., Bekkouche, A., Houmadi, Y., 2014. Sensitivity analysis of soil liquefaction potential. Earth Science Research, 3(1), 14.‏ dx.doi.org/10.5539/esr.v3n1p14