1. Abdoos, H. and Khaloo, A.R., 2024. Failure mechanism of a curved RC shear wall subjected to cyclic loading: Experimental findings. Engineering Structures, 304, p. 117703. DOI: https://doi.org/10.1016/j.engstruct.2024.117703.
2. Beskou, N.D. and Theodorakopoulos, D.D., 2011. Dynamic effects of moving loads on road pavements: A review. Soil Dynamics and Earthquake Engineering, 31 (4), pp. 547–567. DOI: https://doi.org/10.1016/j.soildyn.2010.11.002.
3. Frýba, L., 2013. Vibration of solids and structures under moving loads, Springer Science & Business Media.
4. Foyouzat, M.A., Abdoos, H. and Khaloo, A.R., Mofid, M., 2022. In-plane vibration analysis of horizontally curved beams resting on visco-elastic foundation subjected to a moving mass. Mechanical Systems and Signal Processing, 172, p. 109013. DOI: https://doi.org/10.1016/j.ymssp.2022.109013.
5. Khaloo, A.R., Foyouzat, M.A., Abdoos, H. and Mofid, M., 2023. Axial force contribution to the out-of-plane response of horizontally curved beams under a moving mass excitation. Applied Mathematical Modelling, 115, pp. 148–172. DOI: https://doi.org/10.1016/j.apm.2022.10.047.
6. Christiano, P.P. and Culver, C.G., 1969. Horizontally curved bridges subject to moving load. Journal of Structural Division, 95 (8), pp.1615-1643. DOI: https://doi.org/10.1061/JSDEAG.0002331.
7. Chaudhuri, S.K. and Shore, S., 1977. Dynamic analysis of horizontally curved I-girder bridges. Journal of Structural Division, 103 (8), pp.1589-1604. DOI: https://doi.org/10.1061/JSDEAG.0004696.
8. Nair, S., Garg, V.K. and Lai, Y.S., 1985. Dynamic stability of a curved rail under a moving load. Applied Mathematical Modelling, 9 (3), pp. 220–224. DOI: https://doi.org/10.1016/0307-904X(85)90011-3
9. Galdos, N.H., Schelling, D.R. and Sahin, M.A., 1993. Methodology for impact factor of horizontally curved box bridges. Journal of Structural Engineering, 119 (6), pp. 1917–1934. DOI: https://doi.org/10.1061/(ASCE)0733-9445(1993)119:6(1917)
10. Huang, D., Wang, T.-L. and Shahawy, M., 1998. Vibration of horizontally curved box girder bridges due to vehicles. Computers & Structures, 68 (5), pp. 513–528. DOI: https://doi.org/10.1016/S0045-7949(98)00065-0
11. Howson, W.P. and Jemah, A.K., 1999. Exact out-of-plane natural frequencies of curved Timoshenko beams. Journal of Engineering Mechanics, 125 (1), pp. 19–25. DOI: https://doi.org/10.1061/(ASCE)0733-9399(1999)125:1(19)
12. Yang, Y.-B., Wu, C.-M. and Yau, J.-D., 2001. Dynamic response of a horizontally curved beam subjected to vertical and horizontal moving loads. Journal of Sound and Vibration, 242 (3), pp. 519–537. DOI: https://doi.org/10.1006/jsvi.2000.3355
13. Lee, B.K., Oh, S.J. and Park, K.K., 2002. Free vibrations of shear deformable circular curved beams resting on elastic foundations. International Journal of Structural Stability and Dynamics, 2 (01), pp. 77–97. DOI: https://doi.org/10.1142/S0219455402000440.
14. Zboinski, K. and Dusza, M., 2010. Self-exciting vibrations and Hopf’s bifurcation in non-linear stability analysis of rail vehicles in a curved track. European Journal of Mechanics-A/Solids, 29 (2), pp. 190–203. DOI: https://doi.org/10.1016/j.euromechsol.2009.10.001.
15. Dai, J. and Ang, K.K., 2015. Steady-state response of a curved beam on a viscously damped foundation subjected to a sequence of moving loads. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 229 (4), pp. 375–394. DOI: https://doi.org/10.1177/0954409714563366.
16. Abdoos, H., Khaloo, A.R. and Foyouzat, M.A., 2020. On the out-of-plane dynamic response of horizontally curved beams resting on elastic foundation traversed by a moving mass. Journal of Sound and Vibration, 479, p. 115397. DOI: https://doi.org/10.1016/j.jsv.2020.115397.
17. Abdoos, H., Foyouzat and M.A., Khaloo, A.R., 2023. Parametric study on the dynamics of horizontally curved beams due to a moving inertial load considering the induced torsional moment. Journal of Structural and Construction Engineering, 10 (8), pp. 141-160. DOI: https://doi.org/10.22065/jsce.2023.368612.2964.
18. Lin, J. and Niemeier, D.A., 2002. An exploratory analysis comparing a stochastic driving cycle to California’s regulatory cycle. Atmospheric Environment, 36 (38), pp. 5759–5770. DOI: https://doi.org/10.1016/S1352-2310(02)00695-7.
19. Ho, S.-H., Wong, Y.-D. and Chang, V.W.-C., 2014. Developing Singapore Driving Cycle for passenger cars to estimate fuel consumption and vehicular emissions. Atmospheric Environment, 97, pp. 353–362. DOI: https://doi.org/10.1016/j.atmosenv.2014.08.042
20. Kokhmanyuk, S.S. and Filippov, A.P., 1967. Dynamic effects on a beam of a load moving at variable speed. Stroitelnaya Mekhanika i Raschet so-Oruzhenii, 9 (2), pp. 36–39.
21. Krylov, V.V., 1996. Generation of ground vibrations by accelerating and braking road vehicles. Acta Acustica United with Acustica, 82 (4), pp. 642–649.
22. Zibdeh, H.S. and Rackwitz, R., 1996. Moving loads on beams with general boundary conditions. Journal of Sound and Vibration, 195 (1), pp. 85–102. DOI: https://doi.org/10.1006/jsvi.1996.0405.
23. Abu-Hilal, M., Mohsen, M., 2000. Vibration of beams with general boundary conditions due to a moving harmonic load. Journal of Sound and Vibration, 232 (4), pp. 703–717. DOI: https://doi.org/10.1006/jsvi.1999.2771.
24. Dugush, Y.A. and Eisenberger, M., 2002. Vibrations of non-uniform continuous beams under moving loads. Journal of Sound and Vibration, 254 (5), pp. 911–926. DOI: https://doi.org/10.1006/jsvi.2001.4135.
25. Michaltsos, G.T., 2002. Dynamic behaviour of a single-span beam subjected to loads moving with variable speeds. Journal of Sound and Vibration, 258 (2), pp. 359–372. DOI: https://doi.org/10.1006/jsvi.2002.5141.
26. Zibdeh, H.S., and Abu-Hilal, M., 2003. Stochastic vibration of laminated composite coated beam traversed by a random moving load. Engineering Structures, 25 (3), pp. 397–404. DOI: https://doi.org/10.1016/S0141-0296(02)00181-5.
27. Peng, X., Liu, Z.J. and Hong, J.W., 2006. Vibration analysis of a simply supported beam under moving mass with uniformly variable speeds. Engineering mechanics, 23 (6), pp. 25-29.
28. Li, M., Qian, T., Zhong, Y. and Zhong, H., 2014. Dynamic response of the rectangular plate subjected to moving loads with variable velocity. Journal of Engineering Mechanics, 140 (4). DOI: https://doi.org/10.1061/(ASCE)EM.1943-7889.0000687.
29. Powell, J.P. and Palacín, R., 2015. Passenger stability within moving railway vehicles: Limits on maximum longitudinal acceleration. Urban Rail Transit, 1, pp. 95–103. DOI: https://doi.org/10.1007/s40864-015-0012-y.
30. Beskou, N.D., and Muho, E.V., 2018. Dynamic response of a finite beam resting on a Winkler foundation to a load moving on its surface with variable speed. Soil Dynamics and Earthquake Engineering, 109, pp. 222–226. DOI: https://doi.org/10.1016/j.soildyn.2018.02.033.
31. Liu, Y., Fang, H., Zheng, J.J. and Wang, Y.N., 2021. Dynamic behaviour of pavement on a two-parameter viscoelastic foundation subjected to loads moving with variable speeds. International Journal of Pavement Engineering, 23 (10), pp. 3425-3443. DOI: https://doi.org/10.1080/10298436.2021.1899178.
32. Piovan, M.T., Cortinez, V.H. and Rossi, R.E., 2000. Out-of-plane vibrations of shear deformable continuous horizontally curved thin-walled beams. Journal of Sound and Vibration, 237 (1), pp. 101–118. DOI: https://doi.org/10.1006/jsvi.2000.3055.
33. Yang, Y.-B. and Kuo, S.-R., 1987. Effect of curvature on stability of curved beams. Journal of Structural Engineering, 113 (6), pp. 1185–1202. DOI: https://doi.org/10.1061/(ASCE)0733-9445(1987)113:6(1185)
34. Yang, Y.-B., Yau, J.D., Yao, Z. and Wu, Y.S., 2004. Vehicle-bridge interaction dynamics: with applications to high-speed railways. World Scientific.
35. Foyouzat, M.A., Mofid, M. and Akin, J.E., 2016. On the dynamic response of beams on elastic foundations with variable modulus. Acta Mechanica, 227 (2), pp. 549-564. DOI: https://doi.org/10.1007/s00707-015-1485-1.
36. Foyouzat, M.A., Estekanchi, H.E. and Mofid, M., 2018. An analytical-numerical solution to assess the dynamic response of viscoelastic plates to a moving mass. Applied Mathematical Modelling, 54, pp. 670–696. DOI: https://doi.org/10.1016/j.apm.2017.07.037.
37. Alile, M.R., Foyouzat, M.A. and Mofid, M., 2024. Parametric investigation of the dynamic response of a circular plate excited by a two-degree-of-freedom moving oscillator with inclusion of surface roughness. Archive of Applied Mechanics, 94 (2), pp. 347-364. DOI: https://doi.org/10.1007/s00419-023-02524-y.
38. Moradi, S., Azam, S.E. and Mofid, M., 2021. On Bayesian active vibration control of structures subjected to moving inertial loads. Engineering Structures, 239, p. 112313. DOI: https://doi.org/10.1016/j.engstruct.2021.112313.
39. Azam, S.E., Didyk, M.M., Linzell, D. and Rageh, A., 2022. Experimental validation and numerical investigation of virtual strain sensing methods for steel railway bridges. Journal of Sound and Vibration, 537, p. 117207. DOI: https://doi.org/10.1016/j.jsv.2022.117207.
40. Alile, M.R., Foyouzat, M.A. and Mofid, M., 2022. Vibration of a circular plate on Pasternak foundation with variable modulus due to moving mass. Structural Engineering and Mechanics, 83 (6), pp. 757–770. DOI: https://doi.org/10.12989/sem.2022.83.6.757.
41. Brogan, W.L., 1991. Modern control theory, Pearson Education India.
42. Foyouzat, M.A., 2023. Separation/recontact investigation of a travelling oscillator over a plate with inclusion of surface roughness. Thin-Walled Structures, 183, p. 110373. DOI: https://doi.org/10.1016/j.tws.2022.110373.
43. Foyouzat, M.A., Mofid, M. and Akin, J.E., 2016. Free vibration of thin circular plates resting on an elastic foundation with a variable modulus. Journal of Engineering Mechanics, 142(4), p.04016007. DOI: https://doi.org/10.1061/(ASCE)EM.1943-7889.0001050.
44. Foyouzat, M.A. and Mofid, M., 2019. An analytical solution for bending of axisymmetric circular/annular plates resting on a variable elastic foundation. European Journal of Mechanics-A/Solids, 74, pp.462-470. DOI: https://doi.org/10.1016/j.euromechsol.2019.01.006.
45. Chin, W.W., 1998. The partial least squares approach to structural equation modeling. Modern Methods for Business Research, 295, pp. 295–336.
46. Division, T.P., 2009. MOD UK Railways Permanent Way Design and Maintenance Policy and Standards Issue 4.
47. Vitez, I., Krumes, D. and Vitez, B., 2005. UIC-recommendations for the use of rail steel grades. Metalurgija, 44 (2), pp. 137–140.
48. Abdel-Rohman, M. and Al-Duaij, J., 1996. Dynamic response of hinged-hinged single span bridges with uneven deck. Computers and Structures, 59 (2), pp. 291–299. DOI: https://doi.org/10.1016/0045-7949(95)00262-6.
49. He, W., 2018. Vertical dynamics of a single-span beam subjected to moving mass-suspended payload system with variable speeds. Journal of Sound and Vibration, 418, pp. 36–54. DOI: https://doi.org/10.1016/j.jsv.2017.12.030
50. Foyouzat, M.A. and Estekanchi, H.E., 2017. Dynamic response of thin plates on time-varying elastic point supports. Structural Engineering and Mechanics, 62 (4), pp. 431–441. DOI: https://doi.org/10.12989/sem.2017.62.4.431.