1. Benedettini, F. and Gentile, C., 2011. Operational modal testing and FE model tuning of a cable-stayed bridge. Engineering Structures, 33(6), pp.2063-2073. doi.org/10.1016/j.engstruct.2011.02.046
2. Bernal, D., 2010. Load vectors for damage location in systems identified from operational loads. Journal Of Engineering Mechanics, 136(1), pp.31-39. doi.org/10.1061/(ASCE)EM.1943-7889.0000067
3. Van der Auweraer, H. and Peeters, B., 2003. International research projects on structural health monitoring: an overview. Structural Health Monitoring, 2(4), pp.341-358. doi.org/10.1177/147592103039836
4. Parloo, E., Verboven, P., Guillaume, P. and Van Overmeire, M., 2003. Force identification by means of in-operation modal models. Journal Of Sound And Vibration, 262(1), pp.161-173. doi.org/10.1016/S0022-460X(02)01052-0
5. Caetano, E., Cunha, Á., Moutinho, C. and Magalhães, F., 2010. Studies for controlling human-induced vibration of the Pedro e Inês footbridge, Portugal. Part 2: Implementation of tuned mass dampers. Engineering Structures, 32(4), pp.1082-1091. 10.1016/j.engstruct.2009.12.033
6. Mu, B. and Kiani, K., 2022. Surface and shear effects on spatial buckling of initially twisted nanowires. Engineering Analysis With Boundary Elements, 143, pp.207-218. doi.org/10.1016/j.enganabound.2022.06.011
7. Kiani, K., 2015. Stability and vibrations of doubly parallel current-carrying nanowires immersed in a longitudinal magnetic field. Physics Letters A, 379(4), pp.348-360. doi.org/10.1016/j.physleta.2014.11.006
8. Kiani, K., 2014. Axial buckling analysis of vertically aligned ensembles of single-walled carbon nanotubes using nonlocal discrete and continuous models. Acta Mechanica, 225(12), pp.3569-3589. doi.org/10.1007/s00707-014-1107-3
9. Kiani, K., 2015. Nonlocal and shear effects on column buckling of single-layered membranes from stocky single-walled carbon nanotubes. Composites Part B: Engineering, 79, pp.535-552.
doi.org/10.1016/j.compositesb.2015.04.030
10. Kiani, K., 2016. Nonlocal-integro-differential modeling of vibration of elastically supported nanorods. Physica E: Low-dimensional Systems and Nanostructures, 83, pp.151-163. doi.org/10.1016/j.physe.2016.04.018
11. Borlenghi, P., Gentile, C. and Zonno, G., 2022. Monitoring reinforced concrete arch bridges with operational modal analysis. In Proceedings Of The 1st Conference Of The European Association On Quality Control Of Bridges And Structures: EUROSTRUCT 2021 1 (pp. 361-371). Springer International Publishing. doi.org/10.1007/978-3-030-91877-4_42
12. Wang, T., Zhang, L. and Tamura, Y., 2005. An operational modal analysis method in frequency and spatial domain. Earthquake Engineering And Engineering Vibration, 4, pp.295-300. doi.org/10.1007/s11803-005-0012-0
13. Ramos, L.F., Marques, L., Lourenço, P.B., De Roeck, G., Campos-Costa, A. and Roque, J., 2010. Monitoring
historical masonry structures with operational modal analysis: two case studies. Mechanical Systems And Signal Processing, 24(5), pp.1291-1305. 10.1016/j.ymssp.2010.01.011
14. Felber, A.J., 1994. Development Of A Hybrid Bridge Evaluation System (Doctoral dissertation, University of British Columbia). doi.org/10.14288/1.0050403
15. Brincker, R., Zhang, L. and Andersen, P., 2001. Modal identification of output-only systems using frequency domain decomposition. Smart Materials And Structures, 10(3), p.441. doi.org/10.1088/0964-1726/10/3/303
16. [16] Ibraham, S.R., “A method for the direct identification of vibration parameter from the free responses”, Shock And Vibration Bulletin, 47(4), (1977). doi.org/10.1017/S1014233900003278
17. Juang, J.N. and Pappa, R.S., 1985. An eigensystem realization algorithm for modal parameter identification and model reduction. Journal Of Guidance, Control, And Dynamics, 8(5), pp.620-627. doi.org/10.2514/3.20031
18. Ceravolo, R. and Abbiati, G., 2013. Time domain identification of structures: Comparative analysis of output-only methods. Journal Of Engineering Mechanics, 139(4), pp.537-544. doi.org/10.1061/(ASCE)EM.1943-7889.0000503
19. Reynders, E. and De Roeck, G., 2008. Reference-based combined deterministic–stochastic subspace identification for experimental and operational modal analysis. Mechanical Systems And Signal Processing, 22(3), pp.617-637. doi.org/10.1016/j.ymssp.2007.09.004
20. Vanlanduit, S., Verboven, P., Guillaume, P. and Schoukens, J., 2003. An automatic frequency domain modal parameter estimation algorithm. Journal Of Sound And Vibration, 265(3), pp.647-661. doi.org/10.1016/S0022-460X(02)01461-X
21. Scionti, M. and Lanslots, J.P., 2005. Stabilisation diagrams: Pole identification using fuzzy clustering techniques. Advances In Engineering Software, 36(11-12), pp.768-779. doi.org/10.1016/j.advengsoft.2005.03.029
22. Magalhães, F., Cunha, A. and Caetano, E., 2009. Online automatic identification of the modal parameters of a long span arch bridge. Mechanical Systems And Signal Processing, 23(2), pp.316-329. doi.org/10.1016/j.ymssp.2008.05.003
23. Reynders, E., Houbrechts, J. and De Roeck, G., 2012. Fully automated (operational) modal analysis. Mechanical Systems And Signal Processing, 29, pp.228-250. doi.org/10.1016/j.ymssp.2012.01.007
24. Cabboi, A., Magalhães, F., Gentile, C. and Cunha, Á., 2017. Automated modal identification and tracking: Application to an iron arch bridge. Structural Control And Health Monitoring, 24(1), p.e1854. doi.org/10.1002/stc.1854
25. Cardoso, R., Cury, A. and Barbosa, F., 2017. A robust methodology for modal parameters estimation applied to SHM. Mechanical Systems And Signal Processing, 95, pp.24-41. doi.org/10.1016/j.ymssp.2017.03.021
26. Su, L., Zhang, J.Q., Huang, X. and LaFave, J.M., 2021. Automatic operational modal analysis of structures based on image recognition of stabilization diagrams with uncertainty quantification. Multidimensional Systems And Signal Processing, 32, pp.335-357. doi.org/10.1007/s11045-020-
27. Van Overschee, P. and De Moor, B., 2012. Subspace Identification For Linear Systems: Theory—Implementation—Applications. Springer Science & Business Media. doi.org/10.1007/978-1-4613-0465-4
28. Hartigan, J.A. and Wong, M.A., 1979. Algorithm AS 136: A k-means clustering algorithm. Journal Of The Royal Statistical Society. Series C (Applied Statistics), 28(1), pp.100-108. doi.org/10.2307/2346830
29. DiFrancesco, P.M., Bonneau, D. and Hutchinson, D.J., 2020. The implications of M3C2 projection diameter on 3D semi-automated rockfall extraction from sequential terrestrial laser scanning point clouds. Remote Sensing, 12(11), p.1885. doi.org/10.3390/rs12111885
30. Huang, T., Peng, H. and Zhang, K., 2017. Model selection for Gaussian mixture models. Statistica Sinica, pp.147-169. doi.org/10.5705/ss.2014.05
31. Chang, K.C. and Kim, C.W., 2016. Modal-parameter identification and vibration-based damage detection of a damaged steel truss bridge. Engineering Structures, 122, pp.156-173. doi.org/10.1016/j.engstruct.2016.04.057