آنالیز مودال عملیاتی خودکار سه مرحله‌ای با استفاده از حذف مودهای ریاضی به روش خوشه‌بندی بر اساس چگالی

نوع مقاله : پژوهشی

نویسندگان

گروه مهندسی عمران، دانشکده‌ی فنی و مهندسی، دانشگاه فردوسی، مشهد، ایران

چکیده

از جمله موارد چالش‌برانگیز در آنالیز مودال عملیاتی، وابستگی روش‌های آن به قضاوت کاربر در جداسازی مودهای فیزیکی از مودهای جعلی و تفکیک مودهای واقعی سازه از یکدیگر است. در سال‌های اخیر، مطالعات گسترده‌‌یی درخصوص خودکارسازی روش‌های آنالیز مودال عملیاتی صورت گرفته است. در غالب پژوهش‌های مذکور تلاش شده است که با استفاده از روش‌های یادگیری ماشین نیاز به دخالت کاربر در محاسبه‌ی پارامترهای مودال به میزان کمینه برسد. در پژوهش حاضر، به‌منظور جداسازی مودهای فیزیکی از مودهای جعلی از روش خوشه‌بندی DBSCAN استفاده شده‌ است. درنهایت، به کمک روش خوشه‌بندی سلسله‌مراتبی مودهای فیزیکی شناسایی‌شده از یکدیگر تفکیک شده‌اند. الگوریتم معرفی‌شده بر روی یک سازه‌ی 6 درجه‌ی آزادی و یک پل واقعی پیاده‌سازی شده است. نتایج نشان می‌دهند استفاده از الگوریتم خوش‌بندی DBSCAN نسبت به الگوریتم‌های پیشین مانند K means، توان بالاتری در تفکیک مودهای فیزیکی از ریاضی را دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Three-stage automatic operational modal analysis using mathematical mode elimination by density-based clustering method

نویسندگان [English]

  • A. Salar Mehrabad
  • A. Shooshtari
PhD Student, Engineering Faculty, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده [English]

Estimating a structure's modal parameters is essential for various applications, including health monitoring, damage detection, design verification, and model updating. Modal parameters are a structure's natural frequencies, mode shapes, and damping ratios. They can be used to understand the structure's dynamic behavior and to identify any changes that may occur over time. Operational modal analysis (OMA) is a technique that uses the response of a structure to environmental loads to estimate modal parameters. OMA is a non-destructive testing method that can be used on structures in their operating environment. This makes it a valuable tool for health monitoring and damage detection of buildings, bridges, wind turbines, and stadiums. One of the challenges of OMA is that its methods rely on the user's judgment to separate physical modes from spurious modes and to distinguish between real modes of the structure. Spurious modes are not caused by the actual structure but by noise or other environmental factors. Real modes are caused by the structure itself. In recent years, there has been extensive research on automating OMA methods for modal parameter estimation. Most of these studies have attempted to minimize the need for user intervention in modal parameter calculation by using machine learning techniques. Machine learning techniques can be used to identify physical modes automatically and to distinguish between real modes of the structure. This research uses the Stochastic Subspace Identification (SSI) method for OMA. The DBSCAN clustering method is used to separate physical modes from spurious modes. Finally, the hierarchical clustering method is used to distinguish between real modes of the structure. The proposed algorithm was implemented on a 6-degree-of-freedom structure and a real bridge. The results show that the proposed method has a higher power to separate physical modes from spurious modes than previous methods.

کلیدواژه‌ها [English]

  • Automatic operational modal analysis
  • machine learning
  • clustering
  • structural health monitor
1. Benedettini, F. and Gentile, C., 2011. Operational modal testing and FE model tuning of a cable-stayed bridge. Engineering Structures, 33(6), pp.2063-2073. doi.org/10.1016/j.engstruct.2011.02.046 2. Bernal, D., 2010. Load vectors for damage location in systems identified from operational loads. Journal Of Engineering Mechanics, 136(1), pp.31-39. doi.org/10.1061/(ASCE)EM.1943-7889.0000067 3. Van der Auweraer, H. and Peeters, B., 2003. International research projects on structural health monitoring: an overview. Structural Health Monitoring, 2(4), pp.341-358. doi.org/10.1177/147592103039836 4. Parloo, E., Verboven, P., Guillaume, P. and Van Overmeire, M., 2003. Force identification by means of in-operation modal models. Journal Of Sound And Vibration, 262(1), pp.161-173. doi.org/10.1016/S0022-460X(02)01052-0 5. Caetano, E., Cunha, Á., Moutinho, C. and Magalhães, F., 2010. Studies for controlling human-induced vibration of the Pedro e Inês footbridge, Portugal. Part 2: Implementation of tuned mass dampers. Engineering Structures, 32(4), pp.1082-1091. 10.1016/j.engstruct.2009.12.033 6. Mu, B. and Kiani, K., 2022. Surface and shear effects on spatial buckling of initially twisted nanowires. Engineering Analysis With Boundary Elements, 143, pp.207-218. doi.org/10.1016/j.enganabound.2022.06.011 7. Kiani, K., 2015. Stability and vibrations of doubly parallel current-carrying nanowires immersed in a longitudinal magnetic field. Physics Letters A, 379(4), pp.348-360. doi.org/10.1016/j.physleta.2014.11.006 8. Kiani, K., 2014. Axial buckling analysis of vertically aligned ensembles of single-walled carbon nanotubes using nonlocal discrete and continuous models. Acta Mechanica, 225(12), pp.3569-3589. doi.org/10.1007/s00707-014-1107-3 9. Kiani, K., 2015. Nonlocal and shear effects on column buckling of single-layered membranes from stocky single-walled carbon nanotubes. Composites Part B: Engineering, 79, pp.535-552. doi.org/10.1016/j.compositesb.2015.04.030 10. Kiani, K., 2016. Nonlocal-integro-differential modeling of vibration of elastically supported nanorods. Physica E: Low-dimensional Systems and Nanostructures, 83, pp.151-163. doi.org/10.1016/j.physe.2016.04.018 11. Borlenghi, P., Gentile, C. and Zonno, G., 2022. Monitoring reinforced concrete arch bridges with operational modal analysis. In Proceedings Of The 1st Conference Of The European Association On Quality Control Of Bridges And Structures: EUROSTRUCT 2021 1 (pp. 361-371). Springer International Publishing. doi.org/10.1007/978-3-030-91877-4_42 12. Wang, T., Zhang, L. and Tamura, Y., 2005. An operational modal analysis method in frequency and spatial domain. Earthquake Engineering And Engineering Vibration, 4, pp.295-300. doi.org/10.1007/s11803-005-0012-0 13. Ramos, L.F., Marques, L., Lourenço, P.B., De Roeck, G., Campos-Costa, A. and Roque, J., 2010. Monitoring historical masonry structures with operational modal analysis: two case studies. Mechanical Systems And Signal Processing, 24(5), pp.1291-1305. 10.1016/j.ymssp.2010.01.011 14. Felber, A.J., 1994. Development Of A Hybrid Bridge Evaluation System (Doctoral dissertation, University of British Columbia). doi.org/10.14288/1.0050403 15. Brincker, R., Zhang, L. and Andersen, P., 2001. Modal identification of output-only systems using frequency domain decomposition. Smart Materials And Structures, 10(3), p.441. doi.org/10.1088/0964-1726/10/3/303 16. [16] Ibraham, S.R., “A method for the direct identification of vibration parameter from the free responses”, Shock And Vibration Bulletin, 47(4), (1977). doi.org/10.1017/S1014233900003278 17. Juang, J.N. and Pappa, R.S., 1985. An eigensystem realization algorithm for modal parameter identification and model reduction. Journal Of Guidance, Control, And Dynamics, 8(5), pp.620-627. doi.org/10.2514/3.20031 18. Ceravolo, R. and Abbiati, G., 2013. Time domain identification of structures: Comparative analysis of output-only methods. Journal Of Engineering Mechanics, 139(4), pp.537-544. doi.org/10.1061/(ASCE)EM.1943-7889.0000503 19. Reynders, E. and De Roeck, G., 2008. Reference-based combined deterministic–stochastic subspace identification for experimental and operational modal analysis. Mechanical Systems And Signal Processing, 22(3), pp.617-637. doi.org/10.1016/j.ymssp.2007.09.004 20. Vanlanduit, S., Verboven, P., Guillaume, P. and Schoukens, J., 2003. An automatic frequency domain modal parameter estimation algorithm. Journal Of Sound And Vibration, 265(3), pp.647-661. doi.org/10.1016/S0022-460X(02)01461-X 21. Scionti, M. and Lanslots, J.P., 2005. Stabilisation diagrams: Pole identification using fuzzy clustering techniques. Advances In Engineering Software, 36(11-12), pp.768-779. doi.org/10.1016/j.advengsoft.2005.03.029 22. Magalhães, F., Cunha, A. and Caetano, E., 2009. Online automatic identification of the modal parameters of a long span arch bridge. Mechanical Systems And Signal Processing, 23(2), pp.316-329. doi.org/10.1016/j.ymssp.2008.05.003 23. Reynders, E., Houbrechts, J. and De Roeck, G., 2012. Fully automated (operational) modal analysis. Mechanical Systems And Signal Processing, 29, pp.228-250. doi.org/10.1016/j.ymssp.2012.01.007 24. Cabboi, A., Magalhães, F., Gentile, C. and Cunha, Á., 2017. Automated modal identification and tracking: Application to an iron arch bridge. Structural Control And Health Monitoring, 24(1), p.e1854. doi.org/10.1002/stc.1854 25. Cardoso, R., Cury, A. and Barbosa, F., 2017. A robust methodology for modal parameters estimation applied to SHM. Mechanical Systems And Signal Processing, 95, pp.24-41. doi.org/10.1016/j.ymssp.2017.03.021 26. Su, L., Zhang, J.Q., Huang, X. and LaFave, J.M., 2021. Automatic operational modal analysis of structures based on image recognition of stabilization diagrams with uncertainty quantification. Multidimensional Systems And Signal Processing, 32, pp.335-357. doi.org/10.1007/s11045-020- 27. Van Overschee, P. and De Moor, B., 2012. Subspace Identification For Linear Systems: Theory—Implementation—Applications. Springer Science & Business Media. doi.org/10.1007/978-1-4613-0465-4 28. Hartigan, J.A. and Wong, M.A., 1979. Algorithm AS 136: A k-means clustering algorithm. Journal Of The Royal Statistical Society. Series C (Applied Statistics), 28(1), pp.100-108. doi.org/10.2307/2346830 29. DiFrancesco, P.M., Bonneau, D. and Hutchinson, D.J., 2020. The implications of M3C2 projection diameter on 3D semi-automated rockfall extraction from sequential terrestrial laser scanning point clouds. Remote Sensing, 12(11), p.1885. doi.org/10.3390/rs12111885 30. Huang, T., Peng, H. and Zhang, K., 2017. Model selection for Gaussian mixture models. Statistica Sinica, pp.147-169. doi.org/10.5705/ss.2014.05 31. Chang, K.C. and Kim, C.W., 2016. Modal-parameter identification and vibration-based damage detection of a damaged steel truss bridge. Engineering Structures, 122, pp.156-173. doi.org/10.1016/j.engstruct.2016.04.057