تعیین تعداد و مکان بهینه ی بالابرهای ساختمانی در پروژه‌های ساختمانی با استفاده از یک مدل ریاضی عدد صحیح خطی

نوع مقاله : یادداشت فنی

نویسندگان

1 دانشکده‌ی مهندسی، دانشگاه فردوسی مشهد، مشهد

2 دانشکده‌ی علوم، دانشگاه فردوسی مشهد، مشهد

10.24200/j30.2024.63426.3274

چکیده

با افزایش بلندمرتبه‌سازی در پروژه‌های ساختمانی، استفاده از بالابرها برای جابجایی عمودی مصالح و نیروی انسانی اهمیت بیشتری یافته است. پژوهش‌های بسیاری در زمینه‌ی کاهش زمان سفر بالابرها در طبقات، طراحی بهینه‌ی سیستم‌های بالابری، بهینه‌سازی مسیر حرکت بالابر، و تعیین ترتیب سفر به طبقات، مدیریت مصرف انرژی آسانسورها، و نحوه‌ی زون‌بندی طبقات انجام شده است. اما، تاکنون بهینه‌سازی محل نصب و تعداد بالابرها بررسی نشده است. در نوشتار حاضر، یک مدل عدد صحیح خطی برای تعیین بهینه‌ی تعداد و مکان نصب بالابرها با درنظرگرفتن هزینه‌های نصب، اجاره، و عملیات بالابرها پیشنهاد شده است. تعداد بالابرهای استفاده‌شده می‌تواند در تعداد روزهای کاری پروژه تأثیر بگذارد و در نتیجه، تعداد روزهای کاری و تعداد بالابر به‌صورت هم‌زمان بهینه‌سازی می‌شود. مدل پیشنهادی با استفاده از یک پروژه‌ی مسکونی 20 طبقه آزمایش شده و نتایج نشان داده است که استفاده از مدل پیشنهادی می‌تواند منجر به کاهش هزینه‌ها و تعداد روزهای کاری پروژه شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

DETERMINING THE LOCATION AND OPTIMAL NUMBER OF BUILDING LIFTS IN HIGH-RISE CONSTRUCTION PROJECTS USING A LINEAR INTEGER MATHEMATICAL MODEL

نویسندگان [English]

  • M. Jawaheri 1
  • M. Ahmadnia 2
  • M. Maghrebi 1
  • R. Ghanbari 2
1 Master Student. Faculty of Civil Engineering of Ferdowsi University, Mashhad, Iran.
2 Ph.D. student of Applied Mathematics at Ferdowsi University, Mashhad, Iran.
چکیده [English]

Vertical transportation technology is essential for constructing tall and medium-rise buildings. Although lifts are a functional component of buildings, their vital nature depends on the continuous and uninterrupted use of lifts in each tall building. Therefore, using lifts for vertical transportation of materials and human resources has gained greater importance. Extensive research has been conducted on reducing lift travel time between floors, optimizing lift systems design, optimizing lift movement paths, determining the sequence of floor travel, managing lift energy consumption, and floor zoning. However, the optimization of lift installation locations and quantities has not been examined so far. The use of lifts in construction projects incurs multiple costs, including rental or purchase costs, energy consumption during vertical transportation of materials, and operator salaries. One of the main solutions to reduce these costs is to minimize the duration of lift usage, which, by delivering the required materials on time, can also reduce the project's execution time. The installation costs of lifts may also vary at different candidate points due to factors such as weight and dimensional capacity, electricity consumption, the number of visits for monthly or annual maintenance and repair, and lift operator salaries. Additionally, some candidate points may have advantages over other points in terms of the amount of horizontal movement of materials on building floors. These distinctive features present challenges in selecting the optimal installation point. In this article, an integer linear programming model has been proposed to determine the optimal number and location of lift installations. The number of lifts used can affect the number of project working days, and as a result, the optimization is performed simultaneously for the number of working days and the number of lifts. The goal of this optimization model is to minimize the duration of lift usage and the associated costs. Additionally, using this model, the number of project working days is obtained with a balanced distribution of lift activities. The effectiveness of the proposed model was tested in a case study to evaluate its effectiveness. The case study involved a 20-story building located in the city of Mashhad, which requires determining the number and location of lifts during the workshop preparation phase. Using this model can lead to cost reduction and a decrease in the number of project working days.

کلیدواژه‌ها [English]

  • Construction lift
  • high-rise construction
  • optimization
  • linear programming
  • positioning
1. Huang, C., Wong, C. K. and Tam, C. M., 2010. Optimization of material hoisting operations and storage locations in multi-story building construction by mixed-integer programming. J. of Autom. Constr. 19, pp.656–663. doi: 10.1016/j.autcon.2010.02.005. 2. Bamunuarachchi, D. T. and Ranasinghe, D. N., 2015. Elevator group optimization in a smart building. In 2015 IEEE 10th Int. Conf. Ind. Inf. Syst. ICIIS 2015 - Conf. Proc., 71–76. doi:10.1109/ICIINFS.2015.7398988. 3. Jung, M., Park, M., Lee, H.-S. and Chi, S., 2017. Agent-based lift system simulation model for high-rise building construction projects. J. of Comput. Civ. Eng., 31, 1–10. doi: 10.1061/(asce)cp.1943-5487.0000707. 4. Kamleh, M., 2014. Improving hoist performance during the up-peak of tall building construction. 5. Lin, X., Han, Y., Guo, H., Luo, Z. and Guo, Z., 2023. Lift path planning for tower cranes based on environmental point clouds. J. of Autom. Constr. 155, 105046. doi: 10.1016/j.autcon.2023.105046. 6. Al-Hussein, M., Athar Niaz, M., Yu, H. and Kim, H., 2006. Integrating 3D visualization and simulation for tower crane operations on construction sites. J. of Autom. Constr. 15, pp. 554-563. doi: 10.1016/j.autcon.2005.07.007. 7. Safouhi, H., Mouattamid, M., Hermann, U. and Hendi, A., 2011. An algorithm for the calculation of feasible mobile crane position areas. J. of Autom. Constr. 20, pp. 360–367. doi: 10.1016/j.autcon.2010.11.006. 8. Han, S. H., Hasan, S., Bouferguène, A., Al-Hussein, M. and Kosa, J., 2015. Utilization of 3D visualization of mobile crane operations for modular construction on-site assembly. J. of Manag. Eng. 31, pp. 1–9. doi: 10.1061/(asce)me.1943-5479.0000317. 9. Zhang, Z. and Pan, W., 2021. Multi-criteria decision analysis for tower crane layout planning in high-rise modular integrated construction. J. of Autom. Constr. 127, 103709. doi: 10.1016/j.autcon.2021.103709. 10. Ji, Y. and Leite, F., 2020. Optimized planning approach for multiple tower cranes and material supply points using mixed-integer programming. J. of Constr. Eng. Manag. 146, doi: 10.1061/(asce)co.1943-7862.0001781. 11. Zhang, P., Harris, F. C. and Olomolaiye, P. O., 1996. A computer-based model for optimizing the location of a single tower crane: Authors claim 20-40% of hook horizontal traveling time can be saved if located at the position recommended by the model. J. of Build. Res. Inf. 24, pp. 101-109. doi: 10.1080/09613219608727511. 12. Tam, C. M., Tong, T. K. L. and Chan, W. K. W., 2001. Genetic algorithm for optimizing supply locations around tower crane. J. of Constr. Eng. Manag. 127, pp. 315-322. doi: 10.1061/(asce)0733-9364(2001)127:4(315). 13. Huang, C., Wong, C. K. and Tam, C. M., 2011. Optimization of tower crane and material supply locations in a high-rise building site by mixed-integer linear programming. J. of Autom. Constr. 20, pp. 571–580. doi: 10.1016/j.autcon.2010.11.023. 14. Lien, L. C. and Cheng, M. Y., 2014. Particle bee algorithm for tower crane layout with material quantity supply and demand optimization. J. of Autom. Constr. 45, pp. 25–32. doi: 10.1016/j.autcon.2014.05.002. 15. Riga, K., Jahr, K., Thielen, C. and Borrmann, A., 2020. Mixed integer programming for dynamic tower crane and storage area optimization on construction sites. J. of Autom. Constr. 120, 103259. doi: 10.1016/j.autcon.2020.103259. 16. Dienstknecht, M., 2023. A branch and bound approach for the tower crane selection and positioning problem with respect to mutual interference. 4or 21, pp. 105–123. doi: 10.1007/s10288-022-00503-7. 17. Zavichi, A. and Behzadan, A. H., 2011. A real-time decision support system for enhanced crane operations in construction and manufacturing. In Congress on Computing in Civil Engineering, Proceedings. doi: 10.1061/41182(416)72. 18. Zavichi, A., Madani, K., Xanthopoulos, P. and Oloufa, A. A., 2014. Enhanced crane operations in construction using service request optimization. J. of Autom. Constr. 45, pp. 25–32. doi: 10.1016/j.autcon.2014.07.011. 19. Monghasemi, S., Nikoo, M. R. and Adamowski, J., 2016. Sequential ordering of crane service requests considering the pending times of the requests: an approach based on game theory and optimization techniques. J. of Autom. Constr. 45, pp. 25–32. doi: 10.1016/j.autcon.2016.06.006. 20. Al Hattab, M., Zankoul, E. and Hamzeh, F. R., 2017. Near-real-time optimization of overlapping tower crane operations: a model and case study. J. of Comput. Civ. Eng. 31, pp. 1–9. doi: 10.1061/(asce)cp.1943-5487.0000666. 21. Al Hattab, M., Zankoul, E., Barakat, M. and Hamzeh, F., 2018. Crane overlap and operational flexibility: balancing utilization, duration, and safety. J. of Constr. Innov. 18, pp. 1-15. doi: 10.1108/CI-11-2016-0062. 22. Tarhini, H., Maddah, B. and Hamzeh, F., 2021. The traveling salesman puts-on a hard hat – tower crane scheduling in construction projects. J. of Eur. J. Oper. Res. 291, pp. 1-12. doi: 10.1016/j.ejor.2020.10.029. 23. Tam, C. M. and Tong, T. K. L., 2003. GA-ANN model for optimizing the locations of tower crane and supply points for high-rise public housing construction. J. of Constr. Manag. Econ. 21, pp. 257–266. doi: 10.1080/0144619032000049665. 24. Moussavi Nadoushani, Z. S., Hammad, A. W. A. and Akbarnezhad, A., 2017. Location optimization of tower crane and allocation of material supply points in a construction site considering operating and rental costs. J. of Constr. Eng. Manag. 143, pp. 1–13. doi: 10.1061/(asce)co.1943-7862.0001215. 25. Huang, C. and Wong, C. K., 2018. Optimization of crane setup location and servicing schedule for urgent material requests with non-homogeneous and non-fixed material supply. J. of Autom. Constr. 89, pp. 183–198. doi: 10.1016/j.autcon.2018.01.015. 26. Zhang, P., Harris, F. C., Olomolaiye, P. O. and Holt, G. D., 1999. Location optimization for a group of tower cranes. J. of Constr. Eng. Manag. 125, pp. 115-123. doi: 10.1061/(asce)0733-9364(1999)125:2(115). 27. Wang, J. et al., 2015. A BIM-based approach for automated tower crane layout planning. J. of Autom. Constr. 59, pp. 168–178. doi: 10.1016/j.autcon.2015.05.006. 28. Tork, A., 2013. A real-time crane service scheduling decision support system (CSS-DSS) for construction tower crane. (Ph.D. thesis, College of engineering and computer science, university of central florida). 29. Yeo, K. T. and Ning, J. H., 2006. Managing uncertainty in major equipment procurement in engineering projects. J. of Eur. J. Oper. Res. 171, pp. 123-134. doi: 10.1016/j.ejor.2004.06.036. 30. Yeoh, J. K. W. and Chua, D. K. H., 2017. Optimizing crane selection and location for multistage construction using a four-dimensional set cover approach. J. of Constr. Eng. Manag. 143, pp. 1-12. doi: 10.1061/(asce)co.1943-7862.0001318. 31. Marzouk, M. and Abubakr, A., 2016. Decision support for tower crane selection with building information models and genetic algorithms. J. of Autom. Constr. 61, pp. 1–15. doi: 10.1016/j.autcon.2015.09.008. 32. Wu, K., García de Soto, B. and Zhang, F., 2020. Spatio-temporal panning for tower cranes in construction projects with simulated annealing. J. of Autom. Constr. 111, 103060. doi: 10.1016/j.autcon.2019.103060. 33. Sugimoto, Y., Seki, H., Samo, T. and Nakamitsu, N., 2016. 4D CAD-based evaluation system for crane deployment plans in construction of nuclear power plants. J. of Autom. Constr. 68, pp. 1-10. doi: 10.1016/j.autcon.2016.04.004. 34. Chang, Y. C., Hung, W. H. and Kang, S. C., 2012. A fast path planning method for single and dual crane erections. J. of Autom. Constr. 22, pp. 1-12. doi: 10.1016/j.autcon.2011.11.006 35. Kang, S. C. and Miranda, E., 2006. Planning and visualization for automated robotic crane erection processes in construction. J. of Autom. Constr. 15, pp. 398-408. doi: 10.1016/j.autcon.2005.06.008. 36. Ali, G. M. et al., 2021. Decision support for hydraulic crane stabilization using combined loading and crane mat strength analysis. J. of Autom. Constr. 125, 103884. doi: 10.1016/j.autcon.2021.103884. 37. Gharaie, E., Lingard, H. and Cooke, T., 2015. Causes of fatal accidents Involving Cranes in the Australian construction industry. J. of Constr. Econ. Build. 15, pp. 1-12. doi: 10.5130/AJCEB.v15i2.4244. 38. Shin, Y., Cho, H. and Kang, K. I., 2011. Simulation model incorporating genetic algorithms for optimal temporary hoist planning in high-rise building construction. J. of Autom. Constr. 20, pp. 550–558. doi: 10.1016/j.autcon.2010.11.021. 39. Jung, M. et al., 2017. Construction worker hoisting simulation for sky-lobby lifting system. J. of Autom. Constr. 73, pp. 166–174. doi: 10.1016/j.autcon.2016.10.002. 40. Jalali Yazdi, A., Forsythe, P., Ahmadian Fard Fini, A. and Maghrebi, M., 2019. Optimization of flexible lift processes on high-rise building construction sites. J. of Autom. Constr. 107, 102939. doi: 10.1016/j.autcon.2019.102939. 41. Jalali Yazdi, A., Maghrebi, M. and Bolouri Bazaz, J., 2018. Mathematical model to optimally solve the lift planning problem in high-rise construction projects. J. of Autom. Constr. 92, pp. 120–132. doi: 10.1016/j.autcon.2018.03.029. 42. Beamurgia, M., Basagoiti, R., Rodríguez, I. and Rodriguez, V., 2016. A modified genetic algorithm applied to the elevator dispatching problem. J. of Soft Comput. 20, pp. 3595–3609. doi: 10.1007/s00500-015-1718-1. 43. Ruokokoski, M., Ehtamo, H. and Pardalos, P. M., 2015. Elevator Dispatching Problem: A mixed integer linear programming formulation and polyhedral results. J. of Comb. Optim. 29, pp. 750–780. doi: 10.1007/s10878-013-9620-1. 44. Tai, J., Yang, S. and Tan, H., 2008. Dispatching approach optimization of elevator group control system with destination floor guidance using fuzzy neural network. Proc. In World Congr. Intell. Control Autom. 7, pp. 7085–7088. doi: 10.1109/WCICA.2008.4594016. 45. Utgoff, P. E. and Connell, M. E., 2012. Real-time combinatorial optimization for elevator group dispatching. J. of IEEE Trans. Syst. Man, Cybern. Part A Syst. Humans 42, pp. 130–146. doi: 10.1109/TSMCA.2011.2157134. 46. Tang, H. Y., Bao, D., Qi, W. G. and Zhang, Y. M., 2008. Optimization of elevator group control scheduling with multi-strategy switch. In Proc. 7th Int. Conf. Mach. Learn. Cybern. ICMLC 4, pp. 2067–2072. doi: 10.1109/ICMLC.2008.4620746.